Publications by authors named "Ziolkowski L"

Article Synopsis
  • * Researchers engineered a strain called XEV that can efficiently assimilate xylose by amplifying certain pathways and mutating a specific gene.
  • * When tested with sorghum hydrolysate, the XEV strain outperformed the original strain, showing enhanced xylose usage and lipid production, thus providing insights for better metabolic engineering in this yeast.
View Article and Find Full Text PDF

Pacinian corpuscles are rapidly adapting mechanoreceptor end-organs that detect transient touch and high-frequency vibration. In the prevailing model, these properties are determined by the outer core, which acts as a mechanical filter limiting static and low-frequency stimuli from reaching the afferent terminal-the sole site of touch detection in corpuscles. Here, we determine the detailed 3D architecture of corpuscular components and reveal their contribution to touch detection.

View Article and Find Full Text PDF

Present in all eukaryotic cells, the integrated stress response (ISR) is a highly coordinated signaling network that controls cellular behavior, metabolism, and survival in response to diverse stresses. The ISR is initiated when any 1 of 4 stress-sensing kinases (protein kinase R-like endoplasmic reticulum kinase [PERK], general control non-derepressible 2 [GCN2], double-stranded RNA-dependent protein kinase [PKR], heme-regulated eukaryotic translation initiation factor 2α kinase [HRI]) becomes activated to phosphorylate the protein translation initiation factor eukaryotic translation initiation factor 2α (eIF2α), shifting gene expression toward a comprehensive rewiring of cellular machinery to promote adaptation. Although the ISR has been shown to play an important role in the homeostasis of multiple tissues, evidence suggests that it is particularly crucial for the development and ongoing health of the pancreas.

View Article and Find Full Text PDF

Brain cholesterol metabolic products include neurosteroids and oxysterols, which play important roles in cellular physiology. In neurons, the cholesterol oxidation product, 24S-hydroxycholesterol (24S-HC), is a regulator of signaling and transcription. Here, we examined the behavioral effects of 24S-HC loss, using global and cell-selective genetic deletion of the synthetic enzyme CYP46A1.

View Article and Find Full Text PDF

Mechanosensory corpuscles detect transient touch and vibration in the skin of vertebrates, enabling precise sensation of the physical environment. The corpuscle contains a mechanoreceptor afferent surrounded by lamellar cells (LCs), but corpuscular ultrastructure and the role of LCs in touch detection are unknown. We report the three-dimensional architecture of the avian Meissner (Grandry) corpuscle acquired using enhanced focused ion beam scanning electron microscopy and machine learning-based segmentation.

View Article and Find Full Text PDF

Mechanosensory corpuscles detect transient touch and vibratory signals in the skin of vertebrates, enabling navigation, foraging, and precise manipulation of objects . The corpuscle core comprises a terminal neurite of a mechanoreceptor afferent, the only known touch-sensing element within corpuscles, surrounded by terminal Schwann cells called lamellar cells (LCs) . However, the precise corpuscular ultrastructure, and the role of LCs in touch detection are unknown.

View Article and Find Full Text PDF

Afferents of peripheral mechanoreceptors innervate the skin of vertebrates, where they detect physical touch via mechanically gated ion channels (mechanotransducers). While the afferent terminal is generally understood to be the primary site of mechanotransduction, the functional properties of mechanically activated (MA) ionic current generated by mechanotransducers at this location remain obscure. Until now, direct evidence of MA current and mechanically induced action potentials in the mechanoreceptor terminal has not been obtained.

View Article and Find Full Text PDF

The sense of touch is ubiquitous in vertebrates and relies upon the detection of mechanical forces in the skin by the tactile end-organs of low-threshold mechanoreceptors. Significant progress has been made in understanding the mechanism of tactile end-organ function using mammalian models, but the detailed mechanics of touch sensation in Meissner and Pacinian corpuscles, the principal detectors of transient touch and vibration, remain obscure. The avian homologs of these corpuscles present an opportunity for functional study of mechanosensation in these structures, due to their relative accessibility and high abundance in the bill skin of tactile-foraging waterfowl.

View Article and Find Full Text PDF

Neuroactive steroids are an ascendant class of treatment for neuropsychiatric illness. Effects on ligand-gated neurotransmitter receptors appear to be a major mechanism of action. Here we describe a neuroactive steroid with a unique constellation of receptor actions.

View Article and Find Full Text PDF

Antarctica is an ideal analogue for studying the limits of life. Despite severe temperature fluctuations and desiccating conditions, life is commonly found colonizing the structural cavities within Antarctic rocks (., endoliths).

View Article and Find Full Text PDF

Key Points: Current views suggest γ2 subunit-containing GABA receptors mediate phasic IPSCs while extrasynaptic δ subunits mediate diffusional IPSCs and tonic current. We have re-examined the roles of the two receptor populations using mice with picrotoxin resistance engineered into receptors containing the δ subunit. Using pharmacological separation, we find that in general δ and γ IPSCs are modulated in parallel by manipulations of transmitter output and diffusion, with evidence favouring modestly more diffusional contribution to δ IPSCs.

View Article and Find Full Text PDF

Pentameric GABA receptors mediate a large share of CNS inhibition. The γ2 subunit is a typical constituent. At least 11 mutations in the γ2 subunit cause human epilepsies, making the role of γ2-containing receptors in brain function of keen basic and translational interest.

View Article and Find Full Text PDF

Bioconversion of xylose-the second most abundant sugar in nature-into high-value fuels and chemicals by engineered Saccharomyces cerevisiae has been a long-term goal of the metabolic engineering community. Although most efforts have heavily focused on the production of ethanol by engineered S. cerevisiae, yields and productivities of ethanol produced from xylose have remained inferior as compared with ethanol produced from glucose.

View Article and Find Full Text PDF

Cryoconite holes are oases of microbial diversity on ice surfaces. In contrast to the Arctic, where during the summer most cryoconite holes are 'open', in Continental Antarctica they are most often 'lidded' or completely frozen year-round. Thus, they represent ideal systems for the study of microbial community assemblies as well as carbon accumulation, since individual cryoconite holes can be isolated from external inputs for years.

View Article and Find Full Text PDF

Oxysterol analogs that modulate NMDA receptor function are candidates for therapeutic development to treat neuropsychiatric disorders. However, the cellular actions of these compounds are still unclear. For instance, how these compounds are compartmentalized or trafficked in neurons is unknown.

View Article and Find Full Text PDF

Synthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C model plant tobacco, progress in C monocot crops has been lagging behind.

View Article and Find Full Text PDF

Heavily weathered petroleum residues from the Deepwater Horizon (DwH) disaster continue to be found on beaches along the Gulf of Mexico as oiled-sand patties. Here, we demonstrate the ongoing biodegradation of weathered Macondo Well (MW) oil residues by tracing oil-derived carbon into active microbial biomass using natural abundance radiocarbon (C). Oiled-sand patties and non-oiled sand were collected from previously studied beaches in Mississippi, Alabama, and Florida.

View Article and Find Full Text PDF

Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of HS had indicated the occurrence of microbial sulphate reduction.

View Article and Find Full Text PDF

In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF
Article Synopsis
  • The Atacama Desert's hyperarid core is extremely dry and largely uninhabitable, with life primarily found in rocks where microbial communities exist.
  • Researchers studied the carbon cycling of these microbes by analyzing the isotopic composition of certain fatty acids from colonized rocks at four different locations.
  • Their findings suggest that these microbes are rapidly cycling atmospheric carbon, though one area showed evidence of older carbon linked to nuclear testing, hinting at slower carbon cycling in that specific environment.
View Article and Find Full Text PDF

Here we present a quick and low-cost method to separate the different layers of tissue from the ovules and young seeds of cotton (Gossypium hirsutum L.) for use in high- and low-throughput molecular applications. This method is performed at room temperature using standard laboratory equipment and does not require embedding of the samples, time-consuming fixation, or micro-sectioning procedures.

View Article and Find Full Text PDF

Isotopic analysis of cellular biomass has greatly improved our understanding of carbon cycling in the environment. Compound specific radiocarbon analysis (CSRA) of cellular biomass is being increasingly applied in a number of fields. However, it is often difficult to collect sufficient cellular biomass for analysis from oligotrophic waters because easy-to-use filtering methods that are free of carbon contaminants do not exist.

View Article and Find Full Text PDF

Radiocarbon ((14)C) is a radioactive isotope that is useful for determining the age and cycling of carbon-based materials in the Earth system. Compound specific radiocarbon analysis (CSRA) provides powerful insight into the turnover of individual components that make up the carbon cycle. Extraneous or nonspecific background carbon (C(ex)) is added during sample processing and subsequent isolation of CSRA samples.

View Article and Find Full Text PDF