Understanding the sequence-dependent DNA damage formation requires probing a complete pool of sequences over a wide dose range of the damage-causing exposure. We used high throughput sequencing to simultaneously obtain the dose dependence and quantum yields for oligonucleotide damages for all possible 4096 DNA sequences with hexamer length. We exposed the DNA to ultraviolet radiation at 266 nm and doses of up to 500 absorbed photons per base.
View Article and Find Full Text PDFDeciphering the exact electronic and geometric changes of photoexcited molecules is an important task not only to understand the fundamental atomistic mechanisms but also to rationally design molecular properties and functions. Here, we present a combined experimental and theoretical study of the twisted intramolecular charge transfer (TICT) process in hemithioindigo photoswitches. Using ultrafast transient IR spectroscopy as the main analytical method, a detailed understanding of the extent and direction of charge transfer within the excited molecule is obtained.
View Article and Find Full Text PDFTo map the underlying molecular mechanisms of folding dynamics in proteins, light-operated peptides have emerged as promising tools. In this study, we reveal the complete sequence of light-induced structural changes of AzoChignolin, a short β-hairpin peptide containing an azobenzene photoswitch in its loop region. Light-triggered structural changes were monitored by time-resolved IR spectroscopy.
View Article and Find Full Text PDFCharge transfer has proven to be an important mechanism in DNA photochemistry. In particular, guanine (dG) plays a major role as an electron donor, but the photophysical dynamics of dG-containing charge-transfer states have not been extensively investigated so far. Here, we use UV pump (266 nm) and picosecond IR probe (∼5-7 μm) spectroscopy to study ultrafast dynamics in dG-containing short oligonucleotides as a function of sequence and length.
View Article and Find Full Text PDFUV irradiation induces DNA lesions particularly at dipyrimidine sites. Using time-resolved UV pump (250 nm) and mid-IR probe spectroscopy the triplet pathway of cyclobutane pyrimidine dimer (CPD) formation within TpC and CpT sequences was studied. The triplet state is initially localized at the thymine base but decays with 30 ns under formation of a biradical state extending over both bases of the dipyrimidine.
View Article and Find Full Text PDFPsoralens are natural compounds that serve in the light dependent treatment of certain skin diseases (PUVA therapy). They are DNA intercalators that upon photoexcitation form adducts with thymine bases. For one psoralen derivative, 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), the photoreactions are characterized here by nanosecond UV-vis and IR absorption spectroscopy.
View Article and Find Full Text PDFThe decay of electronically excited states of thymine (Thy) and thymidine 5'-monophosphate (TMP) was studied by time-resolved UV/vis and IR spectroscopy. In addition to the well-established ultrafast internal conversion to the ground state, a so far unidentified UV-induced species is observed. In DO, this species decays with a time constant of 300 ps for thymine and of 1 ns for TMP.
View Article and Find Full Text PDFThe entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
April 2018
Background: Recently diphenyl-pyrazole (DPP) compounds and especially anle138b were found to reduce the aggregation of α-synuclein or Tau protein in vitro as well as in a mouse model of neurodegenerative diseases [1,2]. Direct interaction of the DPPs with the fibrillar structure was identified by fluorescence spectroscopy. Thereby a strong dependence of the fluorescence on the surroundings could be identified [3].
View Article and Find Full Text PDFTwisted intramolecular charge transfer (TICT) formation in hemithioindigo photoswitches has recently been reported and constitutes a second deexcitation pathway complementary to photoisomerization. Typically, this behavior is not found for this type of photoswitches, and it takes special geometric and electronic conditions to realize it. Here we present a systematic study that identifies the molecular preconditions leading to TICT formation in donor substituted hemithioindigo, which can thus serve as a frame of reference for other photoswitching systems.
View Article and Find Full Text PDFControlling the internal motions of molecules by outside stimuli is a decisive task for the generation of responsive and complex molecular behavior and functionality. Light-induced structural changes of photoswitches are of special high interest due to the ease of signal application and high repeatability. Typically photoswitches use one reaction coordinate in their switching process and change between two more or less-defined states.
View Article and Find Full Text PDFUV-induced formation of the cyclobutane pyrimidine dimer (CPD) lesion is investigated by stationary and time-resolved photosensitization experiments. The photosensitizer 2'-methoxyacetophenone with high intersystem crossing efficiency and large absorption cross-section in the UV-A range was used. A diffusion controlled reaction model is presented.
View Article and Find Full Text PDFAbsorption of UV-radiation in nucleotides initiates a number of photophysical and photochemical processes, which may finally cause DNA damage. One major decay channel of photoexcited DNA leads to reactive charge transfer states. This study shows that these states trigger self-repair of DNA photolesions.
View Article and Find Full Text PDFPathological tau aggregation leads to filamentous tau inclusions and characterizes neurodegenerative tauopathies such as Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Tau aggregation coincides with clinical symptoms and is thought to mediate neurodegeneration. Transgenic mice overexpressing mutant human P301S tau exhibit many neuropathological features of human tauopathies including behavioral deficits and increased mortality.
View Article and Find Full Text PDFStationary and time-resolved experiments show that 2'-methoxyacetophenone (2-M) is an interesting compound for the investigation of triplet states in thymine samples. Time-resolved emission experiments show that the fluorescence lifetime of 2-M is 660 ps. A similar time constant of 680 ps is found in transient IR experiments.
View Article and Find Full Text PDFUV-induced Dewar lesion formation is investigated in single- and double-stranded oligonucleotides with ultrafast vibrational spectroscopy. The quantum yield for the conversion of the (6-4) lesion to the Dewar isomer in DNA strands is reduced by a factor of 4 in comparison to model dinucleotides. Time resolved spectroscopy reveals a fast process in the excited state with spectral characteristics of bases which are adjacent to the excited (6-4) lesion.
View Article and Find Full Text PDFBackground: Special diphenyl-pyrazole compounds and in particular anle138b were found to reduce the progression of prion and Parkinson's disease in animal models. The therapeutic impact of these compounds was attributed to the modulation of α-synuclein and prion-protein aggregation related to these diseases.
Methods: Photophysical and photochemical properties of the diphenyl-pyrazole compounds anle138b, anle186b and sery313b and their interaction with monomeric and aggregated α-synuclein were studied by fluorescence techniques.
An exchange system is presented, which allows ultrafast experiments with high excitation rates (1 kHz) on samples with reaction cycles in the range of a few seconds and small sample volumes of about 0.3 ml. The exchange is accomplished using a commercially available cuvette by the combination of a special type of magnetic stirring with transverse translational motion of the sample cuvette.
View Article and Find Full Text PDFUltraviolet (UV) radiation is a leading external hazard to the integrity of DNA. Exposure to UV radiation triggers a cascade of chemical reactions, and many molecular products (photolesions) have been isolated that are potentially dangerous for the cellular system. The early steps that take place after UV absorption by DNA have been studied by ultrafast spectroscopy.
View Article and Find Full Text PDFThe synthesis of novel, chignolin-derived peptides comprising the azobenzene photoswitch [3-(3-aminomethyl)phenylazo]phenylacetic acid (AMPP) is reported. Reversible photoswitching behavior led to folding into β-hairpin-like structures, as unequivocally demonstrated by CD, FT-IR and NMR spectroscopy.
View Article and Find Full Text PDFChem Commun (Camb)
December 2014
UV excitation of the DNA single strand (dT)18 leads to electronically excited states that are potential gateways to DNA photolesions. Using time-resolved infrared spectroscopy we characterized a species with a lifetime of ∼100 ps and identified it as a charge separated excited state between two thymine bases.
View Article and Find Full Text PDFHemithioindigo (HTI) photoswitches have a tremendous potential for biological and supramolecular applications due to their absorptions in the visible-light region in conjunction with ultrafast photoisomerization and high thermal bistability. Rational tailoring of the photophysical properties for a specific application is the key to exploit the full potential of HTIs as photoswitching tools. Herein we use time-resolved absorption spectroscopy and Hammett analysis to discover an unexpected principal limit to the photoisomerization rate for donor-substituted HTIs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2014
Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds.
View Article and Find Full Text PDFThe decay of triplet states and the formation of cyclobutane pyrimidine dimers (CPDs) after UV excitation of the all-thymine oligomer (dT)18 and the locked dinucleotide TLpTL were studied by nanosecond IR spectroscopy. IR marker bands characteristic for the CPD lesion and the triplet state were observed from ∼1 ns (time resolution of the setup) onward. The amplitudes of the CPD marker bands remain constant throughout the time range covered (up to 10 μs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
Base stacking in DNA is related to long-living excited states whose molecular nature is still under debate. To elucidate the molecular background we study well-defined oligonucleotides with natural bases, which allow selective UV excitation of one single base in the strand. IR probing in the picosecond regime enables us to dissect the contribution of different single bases to the excited state.
View Article and Find Full Text PDF