We announce the detection of a new large jump in the phase of the free core nutation (FCN). This is only the second such large FCN phase jump in more than thirty years of FCN monitoring by means of a very long baseline interferometry (VLBI) technique. The new event was revealed and confirmed by analyzing two FCN models derived from a long-time series of VLBI observations.
View Article and Find Full Text PDFThe understanding of forced temporal variations in celestial pole motion (CPM) could bring us significantly closer to meeting the accuracy goals pursued by the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), i.e., 1 mm accuracy and 0.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2016
The Allan variance (AVAR) was introduced 50 years ago as a statistical tool for assessing the frequency standards deviations. For the past decades, AVAR has increasingly been used in geodesy and astrometry to assess the noise characteristics in geodetic and astrometric time series. A specific feature of astrometric and geodetic measurements, as compared with clock measurements, is that they are generally associated with uncertainties; thus, an appropriate weighting should be applied during data analysis.
View Article and Find Full Text PDFThe increasing accuracy and growing time span of Very Long Baseline Interferometry (VLBI) observations allow the determination of seasonal signals in station positions which still remain unmodelled in conventional analysis approaches. In this study we focus on the impact of the neglected seasonal signals in the station displacement on the celestial reference frame and Earth orientation parameters. We estimate empirical harmonic models for selected stations within a global solution of all suitable VLBI sessions and create mean annual models by stacking yearly time series of station positions which are then entered a priori in the analysis of VLBI observations.
View Article and Find Full Text PDF