The 'pyro-phototronic effect' plays a nontrivial role in advancing ferroelectric (FE) devices of light detectors, light-emitting diodes, and other smart technologies. In this work, a premier FE copolymer, poly(vinylidene fluoride--trifluoro ethylene) (P(VDF-TrFE)), is reinforced with a lead-free double perovskite, CsSnI, to render profound properties in a hybrid nanostructure. It presents a unique example of the coupling of ferro-, pyro- and piezo-electrics to the 'photoexcitation' of exotic charges that actively empower the synergetic features.
View Article and Find Full Text PDFMXene-inspired two-dimensional (2D) materials like TiCT are widely known for their versatile properties, including surface plasmon, higher electrical conductivity, exceptional in-plane tensile strength, EMI shielding, and IR thermal properties. The MXene nanosheets coupled poly(vinylidene fluoride) (PVDF) nanofibers with ∼-26 pm V are able to capture the smaller thermal fluctuation due to a superior pyroelectric coefficient of ∼130 nC m K with an improved (∼7 times with respect to neat PVDF nanofibers) pyroelectric current figure of merit (FOM). The significant enhancement of the pyroelectric response is attributed to the confinement effect of 2D MXene (TiCT) nanosheets within PVDF nanofibers, as evidenced from polarized Fourier transform infrared (FTIR) spectroscopy and scanning probe microscopy (SPM).
View Article and Find Full Text PDFBio-piezoelectric materials are endowed with characteristic features such as non-invasiveness, small energy attenuation and deep tissue penetrability. Thus, they have the ability to serve as both diagnostic and therapeutic modalities for targeting and treating various dreaded disorders scourging mankind. Herein, piezoelectric nanotubes derived from a modified amino acid-containing dipeptide, phenylalanine-αβ-dehydrophenylalanine (Phe-ΔPhe; FΔF), possessing acoustic stimulation-triggered reactive oxygen species (ROS) generating ability, were employed and projected for achieving a piezo-active response enabled anti-cancer effect in glioma cells.
View Article and Find Full Text PDFMechanical and solar to electrical energy conversion using piezo- and ferroelectric and photovoltaic effects may be a practical answer to the rising energy demand. In this quest, piezoelectric polymer poly(vinylidene fluoride-hexafluoroproylene) (P(VDF-HFP)) has gained interest due to its superior piezo- and ferroelectricity. In photovoltaic applications, inorganic halide perovskite (IHP) of CsPbI is considered a prime model compound.
View Article and Find Full Text PDFThe real-time application of piezoelectric nanogenerators (PNGs) under a harsh environment remains a challenge due to lower output performance and poor durability. Thus, the development of flexible, sensitive, and stable PNGs became a topic of interest to capture different human motions including gesture monitoring to speech recognition. Herein, a scalable approach is adapted where naphthylamine bridging a [Cd(II)-μ-I] two-dimensional (2D) metal-organic framework (MOF)-reinforced poly(vinylidene fluoride) (PVDF) composite nanofibers mat is prepared to fabricate a flexible and sensitive composite piezoelectric nanogenerator (C-PNG).
View Article and Find Full Text PDFIn recent years, flexible and sensitive pressure sensors are of extensive interest in healthcare monitoring, artificial intelligence, and national security. In this context, we report the synthetic procedure of a three-dimensional (3D) metal-organic framework (MOF) comprising cadmium (Cd) metals as nodes and isoniazid (INH) moieties as organic linkers (CdI-INH═CMe) for designing self-polarized ferroelectret-based highly mechano-sensitive skin sensors. The as-synthesized MOF preferentially nucleates the stable piezoelectric β-phase in poly(vinylidene fluoride) (PVDF) and also gives rise to a porous ferroelectret composite film.
View Article and Find Full Text PDF