Cell death mediated by genetically defined signaling pathways influences the health and dynamics of all tissues, however the tissue specificity of cell death pathways and the relationships between these pathways and human disease are not well understood. We analyzed the expression profiles of an array of 44 cell death genes involved in apoptosis, necroptosis, and pyroptosis cell death pathways across 49 human tissues from GTEx, to elucidate the landscape of cell death gene expression across human tissues, and the relationship between tissue-specific genetically determined expression and the human phenome. We uncovered unique cell death gene expression profiles across tissue types, suggesting there are physiologically distinct cell death programs in different tissues.
View Article and Find Full Text PDFApoptotic, necroptotic, and pyroptotic cell death pathways are attractive and druggable targets for many human diseases, however the tissue specificity of these pathways and the relationship between these pathways and human disease is poorly characterized. Understanding the impact of modulating cell death gene expression on the human phenome could inform clinical investigation of cell death pathway-modulating therapeutics in human disorders by identifying novel trait associations and by detecting tissue-specific side effect profiles. We analyzed the expression profiles of an array of 44 cell death genes across somatic tissues in GTEx v8 and investigated the relationship between tissue-specific genetically determined expression of 44 cell death genes and the human phenome using summary statistics-based transcriptome wide association studies (TWAS) on human traits in the UK Biobank V3 (n ~500,000).
View Article and Find Full Text PDFMyelodysplastic syndrome (MDS) is characterized by persistent cytopenias and evidence of morphologic dysplasia in the bone marrow (BM). Excessive hematopoietic programmed cell death (PCD) and inflammation have been observed in the bone marrow of patients with MDS, and are thought to play a significant role in the pathogenesis of the disease. Necroptosis is a major pathway of PCD that incites inflammation; however, the role of necroptosis in human MDS has not been extensively investigated.
View Article and Find Full Text PDFBackground: All-trans retinoic acid (ATRA), a derivate of vitamin A, has been successfully used as a therapy to induce differentiation in M3 acute promyelocytic leukemia (APML), and has led to marked improvement in outcomes. Previously, attempts to use ATRA in non-APML in the clinic, however, have been underwhelming, likely due to persistent signaling through other oncogenic drivers. Dysregulated JAK/STAT signaling is known to drive several hematologic malignancies, and targeting JAK1 and JAK2 with the JAK1/JAK2 inhibitor ruxolitinib has led to improvement in survival in primary myelofibrosis and alleviation of vasomotor symptoms and splenomegaly in polycythemia vera and myelofibrosis.
View Article and Find Full Text PDFHematopoiesis is a dynamic system that requires balanced cell division, differentiation, and death. The 2 major modes of programmed cell death, apoptosis and necroptosis, share molecular machinery but diverge in outcome with important implications for the microenvironment; apoptotic cells are removed in an immune silent process, whereas necroptotic cells leak cellular contents that incite inflammation. Given the importance of cytokine-directed cues for hematopoietic cell survival and differentiation, the impact on hematopoietic homeostasis of biasing cell death fate to necroptosis is substantial and poorly understood.
View Article and Find Full Text PDFBcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration.
View Article and Find Full Text PDFModifications of cardiolipin (CL) levels or compositions are associated with changes in mitochondrial function in a wide range of pathologies. We have made the discovery that acetaminophen remodels CL fatty acids composition from tetralinoleoyl to linoleoyltrioleoyl-CL, a remodeling that is associated with decreased mitochondrial respiration. Our data show that CL remodeling causes a shift in electron entry from complex II to the β-oxidation electron transfer flavoprotein quinone oxidoreductase (ETF/QOR) pathway.
View Article and Find Full Text PDFBackground: Low levels of energy expenditure (TEE) may contribute to excess weight during childhood, but limited longitudinal data exist.
Objectives: This is to test whether low TEE during the first 6 years of life could predict excess weight status at 8 years.
Methods: Total energy expenditure from doubly labelled water, weight, stature, waist circumference and fat mass and fat-free mass (FFM) in children at 0.
Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities.
View Article and Find Full Text PDFIn aged mice, new B-cell development is diminished and the antibody repertoire becomes more autoreactive. Our studies suggest that (i) apoptosis contributes to reduced B lymphopoiesis in old age and preferentially eliminates those B-cell precursors with higher levels of the surrogate light chain (SLC) proteins (λ5/VpreB) and (ii) λ5(low) B-cell precursors generate new B cells which show increased reactivity to the self-antigen/bacterial antigen phosphorylcholine (PC). Pro-B cells in old bone marrow as well as pro-B cells from young adult λ5-deficient mice are resistant to cytokine-induced apoptosis (TNFα; TGFβ), indicating that low λ5 expression in pro-B cells is sufficient to cause increased survival.
View Article and Find Full Text PDFWhat Is Already Known About This Subject: Childhood obesity has increased 3 to 4 fold. Some children gain excess weight in summer.
What This Study Adds: Total energy expenditure increases almost linearly with fat-free mass.
Multicellular organisms maintain genomic integrity and resist tumorigenesis through a tightly regulated DNA damage response (DDR) that prevents propagation of deleterious mutations either through DNA repair or programmed cell death. An impaired DDR leads to tumorigenesis that is accelerated when programmed cell death is prevented. Loss of the ATM (ataxia telangiectasia mutated)-mediated DDR in mice results in T-cell leukemia driven by accumulation of DNA damage accrued during normal T-cell development.
View Article and Find Full Text PDFThe BH3-only Bid protein is a critical sentinel of cellular stress in the liver and the hematopoietic system. Bid's initial 'claim to fame' came from its ability-as a caspase-truncated product-to trigger the mitochondrial apoptotic program following death receptor activation. Today we know that Bid can response to multiple types of proteases, which are activated under different conditions such as T-cell activation, ischemical reperfusion injury and lysosomal injury.
View Article and Find Full Text PDFObjective: The myeloid translocation genes (MTGs) are transcriptional corepressors with both Mtg8(-/-) and Mtgr1(-/-) mice showing developmental and/or differentiation defects in the intestine. We sought to determine the role of MTG16 in intestinal integrity.
Methods: Baseline and stress induced colonic phenotypes were examined in Mtg16(-/-) mice.
Biochem Biophys Res Commun
June 2012
Cytochrome (cyt) c can uncouple from the respiratory chain following mitochondrial stress and catalyze lipid peroxidation. Accumulating evidence shows that this phenomenon impairs mitochondrial respiratory function and also initiates the apoptotic cascade. Therefore, under certain conditions a pharmacological approach that can inhibit cyt c catalyzed lipid peroxidation may be beneficial.
View Article and Find Full Text PDFCell Death Differ
October 2012
Hematopoietic stem cells (HSCs) possess long-term self-renewal capacity and multipotent differentiative capacity, to maintain the hematopoietic system. Long-term hematopoietic homeostasis requires effective control of genotoxic damage to maintain HSC function and prevent propagation of deleterious mutations. Here we investigate the role of the BH3-only Bcl-2 family member Bid in the response of murine hematopoietic cells to long-term replicative stress induced by hydroxyurea (HU).
View Article and Find Full Text PDFProapoptotic BH3-interacting death domain agonist (BID) regulates apoptosis and the DNA damage response. Following replicative stress, BID associates with proteins of the DNA damage sensor complex, including replication protein A (RPA), ataxia telangiectasia and Rad3 related (ATR), and ATR-interacting protein (ATRIP), and facilitates an efficient DNA damage response. We have found that BID stimulates the association of RPA with components of the DNA damage sensor complex through interaction with the basic cleft of the N-terminal domain of the RPA70 subunit.
View Article and Find Full Text PDFCell Death Differ
May 2011
Proapoptotic BH3 interacting domain death agonist (Bid), a BH3-only Bcl-2 family member, is situated at the interface between the DNA damage response and apoptosis, with roles in death receptor-induced apoptosis as well as cell cycle checkpoints following DNA damage.(1, 2, 3) In this study, we demonstrate that Bid functions at the level of the sensor complex in the Atm and Rad3-related (Atr)-directed DNA damage response. Bid is found with replication protein A (RPA) in nuclear foci and associates with the Atr/Atr-interacting protein (Atrip)/RPA complex following replicative stress.
View Article and Find Full Text PDFProapoptotic Bax and Bak are the key B-cell lymphoma-2 family members mediating apoptosis through the intrinsic pathway. Cells doubly deficient for Bax and Bak are profoundly resistant to apoptotic stimuli originating from multiple stimuli. Here we describe mice in which Bax and Bak have been deleted specifically in T-cells using Lck-Cre.
View Article and Find Full Text PDFReovirus infection leads to apoptosis in both cultured cells and the murine central nervous system (CNS). NF-kappaB-driven transcription of proapoptotic cellular genes is required for the effector phase of the apoptotic response. Although both extrinsic death-receptor signaling pathways and intrinsic pathways involving mitochondrial injury are implicated in reovirus-induced apoptosis, mechanisms by which either of these pathways are activated and their relationship to NF-kappaB signaling following reovirus infection are unknown.
View Article and Find Full Text PDFThe BCL-2 family of apoptotic proteins encompasses key regulators proximal to irreversible cell damage. BID, a "BH3-only" proapoptotic family member, plays a critical role in connecting death signals through surface death receptors such as Fas and tumor necrosis factor-alpha to the core apoptotic pathway at the mitochondria. BID is activated downstream of death receptors by caspase-8 cleavage and N-myristoylation to target mitochondria where it activates BAX, BAK, and the downstream apoptotic pathway.
View Article and Find Full Text PDFIndividual BCL2 family members couple apoptosis regulation and cell cycle control in unique ways. Antiapoptotic BCL2 and BCL-x(L) are antiproliferative by facilitating G0. BAX is proapoptotic and accelerates S-phase progression.
View Article and Find Full Text PDFThe BCL-2 family of apoptotic proteins encompasses key regulators proximal to irreversible cell damage. The BH3-only members of this family act as sentinels, interconnecting specific death signals to the core apoptotic pathway. Our previous data demonstrated a role for BH3-only BID in maintaining myeloid homeostasis and suppressing leukemogenesis.
View Article and Find Full Text PDFChromosomal translocations that fuse the mixed lineage leukemia (MLL) gene with multiple partners typify acute leukemias of infancy as well as therapy-related leukemias. We utilized a conditional knockin strategy to bypass the embryonic lethality caused by MLL-CBP expression and to assess the immediate effects of induced MLL-CBP expression on hematopoiesis. Within days of activating MLL-CBP, the fusion protein selectively expanded granulocyte/macrophage progenitors (GMP) and enhanced their self-renewal/proliferation.
View Article and Find Full Text PDF