Publications by authors named "Zingariello M"

Purpose: Myelofibrosis (MF) is a clonal myeloproliferative neoplasm characterized by systemic symptoms, cytopenias, organomegaly, and bone marrow fibrosis. JAK2 inhibitors afford symptom and spleen burden reduction but do not alter the disease course and frequently lead to thrombocytopenia. TGFβ, a pleiotropic cytokine elaborated by the MF clone, negatively regulates normal hematopoiesis, downregulates antitumor immunity, and promotes bone marrow fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) is a serious lung disease with few treatment options due to a lack of understanding of its causes and limitations in animal models.
  • Researchers hypothesized that GATA1 deficient megakaryocytes, known to worsen myelofibrosis, might also lead to lung fibrosis.
  • Their findings revealed that these megakaryocytes are present in both IPF patients and mice, and manipulating key factors like P-selectin and TGF-β1 can prevent lung fibrosis in the mice model, suggesting a new avenue for understanding and treating IPF.
View Article and Find Full Text PDF

Introduction: Hematopoietic stem cells (HSC) reside in the bone marrow (BM) in specialized niches which provide support for their self-replication and differentiation into the blood cells. Recently, numerous studies using sophisticated molecular and microscopic technology have provided snap-shots information on the identity of the BM niches in mice. In adults, HSC are localized around arterioles and sinusoids/venules whereas in juvenile mice they are in close to the osteoblasts.

View Article and Find Full Text PDF

Emperipolesis between neutrophils and megakaryocytes was first identified by transmission electron microscopy. Although rare under steady-state conditions, its frequency greatly increases in myelofibrosis, the most severe of myeloproliferative neoplasms, in which it is believed to contribute to increasing the transforming growth factor (TGF)-β microenvironmental bioavailability responsible for fibrosis. To date, the challenge of performing studies by transmission electron microscopy has hampered the study of factors that drive the pathological emperipolesis observed in myelofibrosis.

View Article and Find Full Text PDF

The bone marrow (BM) and spleen from patients with myelofibrosis (MF), as well as those from the Gata1 mouse model of the disease contain increased number of abnormal megakaryocytes. These cells express high levels of the adhesion receptor P-selectin on their surface, which triggers a pathologic neutrophil emperipolesis, leading to increased bioavailability of transforming growth factor-β (TGF-β) in the microenvironment and disease progression. With age, Gata1 mice develop a phenotype similar to that of patients with MF, which is the most severe of the Philadelphia-negative myeloproliferative neoplasms.

View Article and Find Full Text PDF

Serum levels of inflammatory cytokines are currently investigated as prognosis markers in myelofibrosis, the most severe Philadelphia-negative myeloproliferative neoplasm. We tested this hypothesis in the model of myelofibrosis. mice, and age-matched wild-type littermates, were analyzed before and after disease onset.

View Article and Find Full Text PDF

Recent studies demonstrated reduced blood lysosomal acid lipase (LAL) activity in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to verify hepatic LAL protein content and activity in in vitro and in vivo models of fat overload and in NAFLD patients. LAL protein content and activity were firstly evaluated in Huh7 cells exposed to high-glucose/high-lipid (HGHL) medium and in the liver of C57BL/6 mice fed with high-fat diet (HFD) for 4 and 8 months.

View Article and Find Full Text PDF

The phenotype of mice carrying the mutation that decreases expression of in erythroid cells and megakaryocytes, includes anemia, thrombocytopenia, hematopoietic failure in bone marrow and development of extramedullary hematopoiesis in spleen. With age, these mice develop myelofibrosis, a disease sustained by alterations in stem/progenitor cells and megakaryocytes. This study analyzed the capacity of driven by a / promoter to rescue the phenotype induced by the mutation in mice.

View Article and Find Full Text PDF

Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGF-β plays a pivotal role in the pathobiology of MF by promoting BM fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF-MKs elaborated significantly greater levels of TGF-β1 than TGF-β2 and TGF-β3 to a varying degree, and we evaluated the ability of AVID200, a potent TGF-β1/TGF-β3 protein trap, to block the excessive TGF-β signaling.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (iCCA) is a rare malignancy of the intrahepatic biliary tract with a very poor prognosis. Although some clinicopathological parameters can be prognostic factors for iCCA, the molecular prognostic markers and potential mechanisms of iCCA have not been well investigated. Here, we report that the Fragile X mental retardation protein (FMRP), a RNA binding protein functionally absent in patients with the Fragile X syndrome (FXS) and also involved in several types of cancers, is overexpressed in human iCCA and its expression is significantly increased in iCCA metastatic tissues.

View Article and Find Full Text PDF

Numerous studies have documented ultrastructural abnormalities in malignant megakaryocytes from bone marrow (BM) of myelofibrosis patients but the morphology of these cells in spleen, an important extramedullary site in this disease, was not investigated as yet. By transmission-electron microscopy, we compared the ultrastructural features of megakaryocytes from BM and spleen of myelofibrosis patients and healthy controls. The number of megakaryocytes was markedly increased in both BM and spleen.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries and is associated with aging and features of metabolic syndrome. Lipotoxicity and oxidative stress are consequent to dysregulation of lipid metabolism and lipid accumulation, leading to hepatocyte injury and inflammation. Lipophagy consists in selective degradation of intracellular lipid droplets by lysosome and mounting evidence suggests that lipophagy is dysregulated in NAFLD.

View Article and Find Full Text PDF
Article Synopsis
  • The authors discovered a citation error in PubMed regarding their article.
  • The name "Piergiorgio La Rosa" was incorrectly cited as "Rosa P."
  • The correct citation should reflect "La Rosa P," with "La Rosa" as the surname and "Piergiorgio" as the first name.
View Article and Find Full Text PDF

Decreased expression of mitochondrial frataxin (FXN) causes Friedreich's ataxia (FRDA), a neurodegenerative disease with type 2 diabetes (T2D) as severe comorbidity. Brown adipose tissue (BAT) is a mitochondria-enriched and anti-diabetic tissue that turns excess energy into heat to maintain metabolic homeostasis. Here we report that the FXN knock-in/knock-out (KIKO) mouse shows hyperlipidemia, reduced energy expenditure and insulin sensitivity, and elevated plasma leptin, recapitulating T2D-like signatures.

View Article and Find Full Text PDF

In 2002, we discovered that mice carrying the hypomorphic Gata1 mutation that reduces expression of the transcription factor GATA1 in megakaryocytes (Gata1 mice) develop myelofibrosis, a phenotype that recapitulates the features of primary myelofibrosis (PMF), the most severe of the Philadelphia-negative myeloproliferative neoplasms (MPNs). At that time, this discovery had a great impact on the field because mutations driving the development of PMF had yet to be discovered. Later studies identified that PMF, as the others MPNs, is associated with mutations activating the thrombopoietin/JAK2 axis raising great hope that JAK inhibitors may be effective to treat the disease.

View Article and Find Full Text PDF

Myelofibrosis is the advanced stage of the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by systemic inflammation, hematopoietic failure in the bone marrow, and development of extramedullary hematopoiesis, mainly in the spleen. The only potentially curative therapy for this disease is hematopoietic stem cell transplantation, an option that may be offered only to those patients with a compatible donor and with an age and functional status that may face its toxicity. By contrast, with the Philadelphia-positive MPNs that can be dramatically modified by inhibitors of the novel BCR-ABL fusion-protein generated by its genetic lesion, the identification of the molecular lesions that lead to the development of myelofibrosis has not yet translated into a treatment that can modify the natural history of the disease.

View Article and Find Full Text PDF

Cultures of stem cells from discarded sources supplemented with dexamethasone, a synthetic glucocorticoid receptor agonist, generate cultured red blood cells (cRBCs) in numbers sufficient for transfusion. According to the literature, however, erythroblasts generated with dexamethasone exhibit low enucleation rates giving rise to cRBCs that survive poorly . The knowledge that the glucocorticoid receptor regulates lipid metabolism and that lipid composition dictates the fragility of the plasma membrane suggests that insufficient lipid bioavailability restrains generation of cRBCs.

View Article and Find Full Text PDF

In Primary Myelofibrosis (PMF), megakaryocyte dysplasia/hyperplasia determines the release of inflammatory cytokines that, in turn, stimulate stromal cells and induce bone marrow fibrosis. The pathogenic mechanism and the cells responsible for progression to bone marrow fibrosis in PMF are not completely understood. This review article aims to provide an overview of the crucial role of megakaryocytes in myelofibrosis by discussing the role and the altered secretion of megakaryocyte-derived soluble factors, enzymes and extracellular matrices that are known to induce bone marrow fibrosis.

View Article and Find Full Text PDF

GATA1, the founding member of a family of transcription factors, plays important roles in the development of hematopoietic cells of several lineages. Although loss of GATA1 has been known to impair hematopoiesis in animal models for nearly 25 years, the link between GATA1 defects and human blood diseases has only recently been realized. Areas covered: Here the current understanding of the functions of GATA1 in normal hematopoiesis and how it is altered in disease is reviewed.

View Article and Find Full Text PDF

Background: Capsular contracture is the most common complication following breast implant placement. The multiple factors unbalancing the physiological response to the foreign body have not been fully elucidated. The aim of this study was to investigate the role of neo-angiogenesis, inflammation and estrogen receptors in peri-prosthetic tissue development and remodeling.

View Article and Find Full Text PDF

The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level.

View Article and Find Full Text PDF

Resistance to the action of growth hormone (GH) frequently complicates liver cirrhosis, while, physiologically, the activation of GH receptor (GHR) determines phosphorylation of signal transducer and activator of transcription (STAT)-5 and the consequent induction of insulin-like growth factor-1 (IGF-1) expression. The suppressor of cytokine signaling (SOCS)-3 negatively regulates this intracellular cascade. We aimed to evaluate the hepatic expression of the GH/IGF-1 axis components in the liver of patients with HCV-related chronic hepatitis at different fibrosis stages.

View Article and Find Full Text PDF

The present study was aimed at investigating whether human Periodontal Ligament Stem Cells (hPDLSCs) were capable of sensing and reacting to lipopolysaccharide from Porphyromonas gingivalis (LPS-G) which is widely recognized as a major pathogen in the development and progression of periodontitis. At this purpose hPDLCs were stimulated with 5 μg/mL LPS-G various times and the expression of toll-like receptor 4 (TLR4) was evaluated. Toll-like receptors (TLRs) play an essential role in innate immune signaling in response to microbial infections, and in particular TLR4, type-I transmembrane proteins, has been shown recognizing LPS-G.

View Article and Find Full Text PDF

The fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the absence of FMRP, a protein regulating RNA metabolism. Recently, an unexpected function of FMRP in modulating the activity of Adenosine Deaminase Acting on RNA (ADAR) enzymes has been reported both in Drosophila and Zebrafish. ADARs are RNA-binding proteins that increase transcriptional complexity through a post-transcriptional mechanism called RNA editing.

View Article and Find Full Text PDF

Myelofibrosis (MF) is characterized by hyperactivation of thrombopoietin (TPO) signaling, which induces a RPS14 deficiency that de-regulates GATA1 in megakaryocytes by hampering its mRNA translation. As mice carrying the hypomorphic Gata1 mutation, which reduces the levels of Gata1 mRNA in megakaryocytes, develop MF, we investigated whether the TPO axis is hyperactive in this model. Gata1 mice contained two times more Tpo mRNA in liver and TPO in plasma than wild-type littermates.

View Article and Find Full Text PDF