The fully developed laminar flow of a viscous non-Newtonian fluid in a rough-walled pipe is considered. The fluid rheology is described by the power-law model (covering shear thinning, Newtonian, and shear thickening fluids). The rough surface of the pipe is considered to be fractal, and the surface roughness is measured using surface fractal dimensions.
View Article and Find Full Text PDFUltrasound propagation in porous materials involves some higher order physical parameters whose importance depends on the acoustic characteristics of the materials. This article concerns the study of the influence of two parameters recently introduced, namely, the viscous and thermal surfaces, on the acoustic wave reflected by the first interface of a porous material with a rigid structure. These two parameters describe the fluid/structure interactions in a porous medium during the propagation of the acoustic wave in the high-frequency regime.
View Article and Find Full Text PDFThree series of binary, FeTi (Ti-rich), FeAl and TiAl (Al-rich) alloy samples were produced in an argon arc furnace. An annealing treatment of 72 h at 1000 °C was applied to the samples, giving rise to different equilibrium microstructures depending on chemical composition. Their mechanical properties were studied through the determination of elastic constants that measure the stiffness of the elaborated materials.
View Article and Find Full Text PDF