Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma having a poor overall survival that is in need for the development of new therapeutics. In this study, we report the identification and expression of a new isoform splice variant of the tyrosine kinase receptor AXL in MCL cells. This new AXL isoform, called AXL3, lacks the ligand-binding domain of the commonly described AXL splice variants and is constitutively activated in MCL cells.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is a non-Hodgkin lymphoma that remains incurable with the treatment options available today. In the present study, we have identified the dihydroorotate dehydrogenase (DHODH), an essential enzyme for the biosynthesis of pyrimidine-based nucleotides, to be overexpressed in MCL in comparison to healthy peripheral blood mononuclear cells (PBMC). In vitro inhibition of the DHODH activity using a newly developed DHODH inhibitor, namely ()-HZ05, can induce MCL cell death in the nanomolar range independently than the P53 status of the investigated cell lines.
View Article and Find Full Text PDFThe original PDF version of this Article listed the authors as "Marcus J.G.W.
View Article and Find Full Text PDFThe development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH).
View Article and Find Full Text PDFObjective: COL6A3 may modulate adipose tissue function in obesity and insulin resistance. A role for human adipocytes linking COL6A3 with insulin resistance warrants exploration.
Methods: COL6A3 mRNA in abdominal subcutaneous adipose samples was compared between (1) BMI-matched obese subjects resistant or sensitive to insulin (surgical whole tissue biopsies, n = 30/group), (2) lean/overweight and obese subjects (isolated adipocytes from collagenase-treated surgical biopsies, n = 11/group), (3) developing primary human adipocytes with/without knockdown of the insulin-sensitizing adipogenic gene PPARG (collagenase-treated lipoaspirate, n = 5), and (4) small and large adipocytes from lean/overweight subjects (collagenase-treated surgical biopsies or lipoaspirate, n = 10).