Publications by authors named "Zinan Zhou"

Ethylicin is a pesticide with excellent bactericidal ability. The incidence of poisoning has increased in recent years with the widespread use of ethylicin in green agriculture, but reports are lacking. In this study, we described three cases of oral ethylicin poisoning.

View Article and Find Full Text PDF

The interface issue poses a limitation on the fast charging of solid-state batteries (SSBs), with the high-impedance non-Faraday electric field serving as a pivotal factor. However, the mechanism of fast-charging capability degradation triggered by the dynamic evolution of non-Faraday electric fields remains unclear due to the lack of particle-scale nondestructive detection techniques. Here, we dissect the generation and elimination processes of non-Faradaic electric field in segments using the developed operando cryogenic transmission X-ray microscopy (Cryo-TXM).

View Article and Find Full Text PDF

Measurement-induced state disturbance is a major challenge in obtaining quantum statistics at multiple time points. We propose a method to extract dynamic information from a quantum system at intermediate time points, namely snapshotting quantum dynamics. To this end, we apply classical post-processing after performing the ancilla-assisted measurements to cancel out the impact of the measurements at each time point.

View Article and Find Full Text PDF

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown.

View Article and Find Full Text PDF

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels).

View Article and Find Full Text PDF

Converting cellulose (Cel) into ethyl levulinate (EL) is one of the promising strategies for supplying liquid fuels. In this paper, the prepared sulfonated P-W-modified N-containing carbon-based solid acid catalyst (PWNCS), in which the Polyaniline (PANI) was employed as N and C precursors, successfully converted Cel into EL under the water-ethanol medium. The characterization results demonstrated that a tiny addition of P increased the Brønsted acid sites (BAS) content and defective WO provided the Lewis acid sites (LAS), meanwhile, the sulfonation process did not change the fundamental structure but introduced the sulfonic groups to dramatically increase the acidic content.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-β and tau. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases.

View Article and Find Full Text PDF

Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.

View Article and Find Full Text PDF

Characterizing the mechanisms of somatic mutations in the brain is important for understanding aging and disease, but little is known about the mutational patterns of different cell types. We performed whole-genome sequencing of 71 oligodendrocytes and 51 neurons from neurotypical individuals (0.4 to 104 years old) and identified >67,000 somatic single nucleotide variants (sSNVs) and small insertions and deletions (indels).

View Article and Find Full Text PDF

Accurate somatic mutation detection from single-cell DNA sequencing is challenging due to amplification-related artifacts. To reduce this artifact burden, an improved amplification technique, primary template-directed amplification (PTA), was recently introduced. We analyzed whole-genome sequencing data from 52 PTA-amplified single neurons using SCAN2, a new genotyper we developed to leverage mutation signatures and allele balance in identifying somatic single-nucleotide variants (SNVs) and small insertions and deletions (indels) in PTA data.

View Article and Find Full Text PDF

The accumulation of somatic DNA mutations over time is a hallmark of aging in many dividing and nondividing cells but has not been studied in postmitotic human cardiomyocytes. Using single-cell whole-genome sequencing, we identified and characterized the landscape of somatic single-nucleotide variants (sSNVs) in 56 single cardiomyocytes from 12 individuals (aged from 0.4 to 82 years).

View Article and Find Full Text PDF

Dementia in Alzheimer's disease progresses alongside neurodegeneration, but the specific events that cause neuronal dysfunction and death remain poorly understood. During normal ageing, neurons progressively accumulate somatic mutations at rates similar to those of dividing cells which suggests that genetic factors, environmental exposures or disease states might influence this accumulation. Here we analysed single-cell whole-genome sequencing data from 319 neurons from the prefrontal cortex and hippocampus of individuals with Alzheimer's disease and neurotypical control individuals.

View Article and Find Full Text PDF
Article Synopsis
  • * This processor incorporates key functions like initialization, manipulation, and measurement of ququart states along with multi-value quantum-controlled logic gates, all while maintaining high fidelity.
  • * By reprogramming the processor, fundamental quantum algorithms were executed, demonstrating over one million high-fidelity operations, showcasing the processor's potential for developing larger-scale quantum computers with improved efficiency and accuracy.
View Article and Find Full Text PDF

Although oncogenic mutations have been found in nondiseased, proliferative nonneural tissues, their prevalence in the human brain is unknown. Targeted sequencing of genes implicated in brain tumors in 418 samples derived from 110 individuals of varying ages, without tumor diagnoses, detected oncogenic somatic single-nucleotide variants (sSNV) in 5.4% of the brains, including .

View Article and Find Full Text PDF

Mutations in CCM1 (aka KRIT1), CCM2, or CCM3 (aka PDCD10) gene cause cerebral cavernous malformation in humans. Mouse models of CCM disease have been established by deleting Ccm genes in postnatal animals. These mouse models provide invaluable tools to investigate molecular mechanism and therapeutic approaches for CCM disease.

View Article and Find Full Text PDF

A facile-green strategy to synthesize carbon dots (CDs) with a quantum yield (QY) of nearly 13.9% has been built up, while tomato juice served as the carbon source. Interestingly, not only the precursor of CDs and the whole synthesis procedure were environmental-friendly, but this type of CDs also exhibited multiple advantages including high fluorescent QY, excellent photostability, non-toxicity and satisfactory stability.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho, SMAD and Wnt/β-catenin) and processes such as endothelial-mesenchymal transition (EndMT) proposed to have causal roles.

View Article and Find Full Text PDF

Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS.

View Article and Find Full Text PDF

The cerebral cavernous malformation (CCM) pathway is required in endothelial cells for normal cardiovascular development and to prevent postnatal vascular malformations, but its molecular effectors are not well defined. Here we show that loss of CCM signaling in endocardial cells results in mid-gestation heart failure associated with premature degradation of cardiac jelly. CCM deficiency dramatically alters endocardial and endothelial gene expression, including increased expression of the Klf2 and Klf4 transcription factors and the Adamts4 and Adamts5 proteases that degrade cardiac jelly.

View Article and Find Full Text PDF

Rationale: Acyl-Coenzyme A (CoA) thioesters are the principal form of activated carboxylates in cells and tissues. They are employed as acyl carriers that facilitate the transfer of acyl groups to lipids and proteins. Quantification of medium- and long-chain acyl-CoAs represents a significant bioanalytical challenge because of their instability.

View Article and Find Full Text PDF

Polo-like kinase 1 (Plk1) overexpression is associated with tumorigenesis by an unknown mechanism. Likewise, Plk1 was suggested to act as a negative regulator of tumor suppressor p53, but the mechanism remains to be determined. Herein, we have identified topoisomerase I-binding protein (Topors), a p53-binding protein, as a Plk1 target.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionql3o4m2bpokb93aaevk21fr5vjr9rjru): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once