We have developed a hybrid machine learning (ML) model for the prediction and optimization of a gliding arc plasma tar reforming process using naphthalene as a model tar compound from biomass gasification. A linear combination of three well-known algorithms, including artificial neural network (ANN), support vector regression (SVR) and decision tree (DT) has been established to deal with the multi-scale and complex plasma tar reforming process. The optimization of the hyper-parameters of each algorithm in the hybrid model has been achieved by using the genetic algorithm (GA), which shows a fairly good agreement between the experimental data and the predicted results from the ML model.
View Article and Find Full Text PDF