Frenulates are a group of sedentary Annelida within the family Siboglinidae that inhabit the ocean floor and present a unique challenge for comprehensive molecular and phylogenetic investigations. In this study, we focused on the frenulates, specifically assembling the mitochondrial genomes of and . The phylogenetic reconstruction placed as a sister taxon to , and as a sister taxon to , supporting the non-monophyletic nature of the genus .
View Article and Find Full Text PDFThe spionid worm is a convenient model for regeneration studies due to its accessibility, high tolerance, and ease of maintenance in laboratory culture. This article presents the findings regarding neuroregeneration and the structure of the nervous system based on antibody labeling of serotonin and FMRFamide. We propose the main stages of central nervous system neurogenesis during regeneration: single nerve fibers, a loop structure, and neurons in the brain and segmental ganglia.
View Article and Find Full Text PDFBackground: In recent two decades, studies of the annelid nervous systems were revolutionized by modern cell labeling techniques and state-of-the-art microscopy techniques. However, there are still huge gaps in our knowledge on the organization and functioning of their nervous system. Most of the recent studies have focused on the distribution of serotonin and FMRFamide, while the data about many other basic neurotransmitters such as histamine (HA) and gamma-aminobutyric acid (GABA) are scarce.
View Article and Find Full Text PDFBackground: The nervous system of siboglinids has been studied mainly in Osedax and some Vestimentifera, while data in Frenulata - one of the four pogonophoran main branches - is still fragmentary. In most of the studies, the focus is almost always on the central nervous system, while the peripheral nervous system has traditionally received little attention. In contrast to other annelids, the structure and diversity of sensory structures in siboglinids are still quite undescribed.
View Article and Find Full Text PDFPopulations of periwinkles Littorina saxatilis (Olivi 1792) and L. arcana Hannaford Ellis, 1978 are well suited for microevolutionary studies, being at the same time closely related and intraspecifically diverse. The divergence between these two sibling species, sympatric over large parts of their distribution areas, is small, the only morphological difference being the pallial gland complex structure in females.
View Article and Find Full Text PDF