Phagocytosis plays vital roles in injury and repair, while its regulation by properdin and innate repair receptor, a heterodimer receptor of erythropoietin receptor (EPOR)/β common receptor (βcR), in renal ischaemia-reperfusion (IR) remains unclear. Properdin, a pattern recognition molecule, facilitates phagocytosis by opsonizing damaged cells. Our previous study showed that the phagocytic function of tubular epithelial cells isolated from properdin knockout () mouse kidneys was compromised, with upregulated EPOR in IR kidneys that was further raised by at repair phase.
View Article and Find Full Text PDFProperdin, a positive regulator of complement alternative pathway, participates in renal ischemia-reperfusion (IR) injury and also acts as a pattern-recognition molecule affecting apoptotic T-cell clearance. However, the role of properdin in tubular epithelial cells (TECs) at the repair phase post IR injury is not well defined. This study revealed that properdin knockout (P) mice exhibited greater injury in renal function and histology than wild-type (WT) mice post 72-h IR, with more apoptotic cells and macrophages in tubular lumina, increased active caspase-3 and HMGB1, but better histological structure at 24 h.
View Article and Find Full Text PDFKidneys from donation after circulatory death (DCD) are more likely to be declined for transplantation compared with kidneys from donation after brain death (DBD). The aim of this study was to evaluate characteristics in the biopsies of human DCD and DBD kidneys that were declined for transplantation in order to rescue more DCD kidneys. Sixty kidney donors (DCD = 36, DBD = 24) were recruited into the study and assessed using donor demographics.
View Article and Find Full Text PDFRenal Ischemia-Reperfusion Injury (IRI) is one of the main causes of Acute Kidney Injury (AKI), and may lead to chronic kidney disease. The high mortality rate of AKI has not changed in the last 5 decades due to non-recognition, nephrotoxin exposure, delayed diagnosis and lack of specific intervention. Complement activation plays important roles in IRI-induced AKI because of its association with immunity, inflammation, cell death and tissue repair.
View Article and Find Full Text PDFProximal tubular epithelial cells are particularly sensitive to damage. In search of a biomarker, this study evaluated the potential of different cell activation models (hypoxia/replenishment and protein overload) to lead to a release of trefoil factor 3 (TFF3). Surprisingly, we found disparity in the ability of the different stimuli to enhance the intracellular abundance of TFF3 and its release: while conditions of nutrient starvation and damage associated with replenishment lead to intracellular abundance of TFF3 in the absence of TFF3 release, stimulation with an excess amount of albumin did not yield accumulation of TFF3.
View Article and Find Full Text PDF