Publications by authors named "Zinaeli Lopez-Gonzalez"

Article Synopsis
  • Bartter's syndrome (BS) is a genetic disorder affecting kidney function, leading to imbalances in electrolytes and blood pressure due to loss-of-function variants in specific genes.
  • The study aimed to conduct clinical and genetic analyses on families with two types of Bartter syndrome: Antenatal Bartter syndrome (ABS) and Classic Bartter syndrome (CBS).
  • Results revealed pathogenic variants in the SLC12A1, KCNJ1, and CLCNKB genes among several patients, highlighting the genetic basis for ABS and CBS.
View Article and Find Full Text PDF

G protein-activated inward-rectifying potassium (K ) channels (Kir3/GIRK) participate in cell excitability. The GIRK5 channel is present in Xenopus laevis oocytes. In an attempt to investigate the physiological role of GIRK5, we identified a noncanonical di-arginine endoplasmic reticulum (ER) retention motif (KRXY).

View Article and Find Full Text PDF

The kidney controls body fluids, electrolyte and acid-base balance. Previously, we demonstrated that hyperpolarization-activated and cyclic nucleotide-gated (HCN) cation channels participate in ammonium excretion in the rat kidney. Since acid-base balance is closely linked to potassium metabolism, in the present work we aim to determine the effect of chronic metabolic acidosis (CMA) and hyperkalemia (HK) on protein abundance and localization of HCN3 in the rat kidney.

View Article and Find Full Text PDF

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by a family of four genes (HCN1-4). All isoforms are expressed in the heart, HCN4 being the most abundant in the sinoatrial node (SAN). HCN channels are responsible for the "funny" current (I) associated with the generation and autonomic control of the diastolic depolarization phase of cardiac action potential.

View Article and Find Full Text PDF

Hyperpolarization-activated cationic HCN channels comprise four members (HCN1-4) that control dendritic integration, synaptic transmission and action potential firing. In the kidney, HCN1, HCN2 and HCN3 are differentially expressed and contribute to the transport of sodium, potassium (K) and ammonium into the nephrons. HCN3 is regulated by K diets in the kidney.

View Article and Find Full Text PDF

Hyperpolarization-activated cationic and cyclic nucleotide-gated channels (HCN) comprise four homologous subunits (HCN1-HCN4). HCN channels are found in excitable and non-excitable tissues in mammals. We have previously shown that HCN2 may transport ammonium (NH4 (+)), besides sodium (Na(+)), in the rat distal nephron.

View Article and Find Full Text PDF