Publications by authors named "Zimiao Luo"

Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation.

View Article and Find Full Text PDF

Brain metastasis is a common and serious complication of breast cancer, which is commonly associated with poor survival and prognosis. In particular, the treatment of brain metastasis from triple-negative breast cancer (BM-TNBC) has to face the distinct therapeutic challenges from tumor heterogeneity, circulating tumor cells (CTCs), blood-brain barrier (BBB) and blood-tumor barrier (BTB), which is in unmet clinical needs. Herein, combining with the advantages of synthetic and natural targeting moieties, we develop a "Y-shaped" peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC.

View Article and Find Full Text PDF

Biomimetic drug delivery systems, especially red blood cell (RBC) membrane-based nanoparticle drug delivery systems (RNP), have been extensively utilized in tumor drug delivery because of their excellent biocompatibility and prolonged circulation. In this study, we developed an active targeting pH-sensitive RNP loaded with DOX by decorating an aptamer SL1 on RBC membranes (SL1-RNP-DOX) for c-Met-targeted therapy of glioblastoma multiforme (GBM). SL1 could specifically bind to c-Met, which is highly expressed in GBM U87MG cells and facilitate DOX delivery to GBM cells.

View Article and Find Full Text PDF

Drug nanocrystals, which are comprised of active pharmaceutical ingredients and only a small amount of essential stabilizers, have the ability to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs; in turn, drug nanocrystal technology can be utilized to develop novel formulations of chemotherapeutic drugs. Compared with passive targeting strategy, active tumor-targeted drug delivery, typically enabled by specific targeting ligands or molecules modified onto the surface of nanomedicines, circumvents the weak and heterogeneous enhanced permeability and retention (EPR) effect in human tumors and overcomes the disadvantages of nonspecific drug distribution, high administration dosage and undesired side effects, thereby contributing to improving the efficacy and safety of conventional nanomedicines for chemotherapy. Continuous efforts have been made in the development of active tumor-targeted drug nanocrystals delivery systems in recent years, most of which are encouraging and also enlightening for further investigation and clinical translation.

View Article and Find Full Text PDF

Chemotherapy is still the mainstay treatment for metastatic triple-negative breast cancers (TNBC) currently in clinical practice. The unmet needs of chemotherapy for metastatic TNBC are mainly from the insufficient drug delivery and unavailable targeting strategy that thwart the whole progression of metastatic TNBC. The in vivo ligands-mediated active targeting efficiency is usually affected by protein corona.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor prognosis and frequent recurrence, complicated by barriers that limit drug delivery to the tumor site.
  • * The study introduces a novel treatment approach utilizing a targeted liposome formulation (pV-Lip/cNC) that combines a D-peptide ligand (VAP) and p-hydroxybenzoic acid (pHA) to effectively cross the blood-brain barrier (BBB).
  • * In preclinical models, this treatment significantly improved drug accumulation in glioma cells and extended survival time in mice compared to single-ligand treatments, suggesting that pV-Lip/cNC could offer a promising strategy for treating all stages of glioma.
View Article and Find Full Text PDF

In this work, a peptide-modified, biodegradable, nontoxic, brain-tumor-targeting nanoprobe based on superparamagnetic iron oxide nanoparticles (SPIONs) (which have been commonly used as -weighted magnetic resonance (MR) contrast agents) was successfully synthesized and applied for accurate molecular MR imaging and sensitive optical imaging. PEPHC1, a short peptide which can specifically bind to epidermal growth factor receptor variant III (EGFRvIII) that is overexpressed in glioblastoma, was conjugated with SPIONs to construct the nanoprobe. Both in vitro and in vivo MR and optical imaging demonstrated that the as-constructed nanoprobe was effective and sensitive for tumor targeting with desirable biosafety.

View Article and Find Full Text PDF

There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites.

View Article and Find Full Text PDF

As one of the most intractable tumours, pancreatic ductal adenocarcinoma (PDA) has a dense extracellular matrix (ECM) which could increase solid stress within tumours to compress tumour vessels, reduce tumour perfusion and compromise nanomedicine delivery for PDA. Thus, alleviating solid stress represents a potential therapeutic target for PDA treatment. In this study, cyclopamine, a special inhibitor of the hedgehog signalling pathway which contributes a lot to ECM formation of PDA, was exploited to alleviate solid stress and improve nanomedicine delivery to PDA.

View Article and Find Full Text PDF

The unique tumour microenvironment (TM) of pancreatic ductal adenocarcinoma (PDA) including highly desmoplastic ECM and low tumour perfusion supports a considerable barrier for effective delivery of nanomedicines. Effectively modulating PDA microenvironment to enhance tumour drug delivery represents a pinpoint in the field of PDA treatment. In this study, it was the first time that biomimetic nanoparticles, which were designed in the form of erythrocyte membrane-camouflaged PLGA nanoparticles (MNP), were utilized for PDA microenvironment modulation.

View Article and Find Full Text PDF

Blood perfusion was always lower in tumor tissues as compared with that in surrounding normal tissues which lead to inadequate nanomedicine delivery to tumors. Inspired by the upregulation of both endothelin-1 (ET1) and its ETA receptor in tumor tissues and the crucial contribution of ET1-ETA receptor signaling to maintain myogenic tone of tumor vessels, we supposed that inhibition of ET1-ETA receptor signaling might selectively improve tumor perfusion and help deliver nanomedicine to tumors. Using human U87 MG glioblastomas with abundant vessels as the tumor model, immunofluorescence staining demonstrated that ETA receptor was overexpressed by in glioblastomas tissues compared with normal brain tissues.

View Article and Find Full Text PDF

Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy.

View Article and Find Full Text PDF

Glioblastoma is one of the most challenging and intractable tumors with the difficult treatment and poor prognosis. Unsatisfactory traditional systemic chemotherapies for glioblastoma are mainly attributed to the insufficient and nonspecific drug delivery into the brain tumors as well as the incomplete drug release at the tumor sites. Inspired by the facts that angiopep-2 peptide is an acknowledged dual-targeting moiety for brain tumor-targeting delivery and high-intensity focused ultrasound (HIFU) is an ideal trigger for drug release with an ultrahigh energy and millimeter-sized focus ability, in the present study, a novel HIFU-responsive angiopep-2-modified small poly(lactic-co-glycolic acid) (PLGA) hybrid nanoparticle (NP) drug delivery system holding doxorubicin/perfluorooctyl bromide (ANP-D/P) was designed to increase the intratumoral drug accumulation, further trigger on-demand drug release at the glioblastoma sites, and enhance glioblastoma therapy.

View Article and Find Full Text PDF

Barriers presented by the tumor microenvironment including the abnormal tumor vasculature and interstitial matrix invariably lead to heterogeneous distribution of nanotherapeutics. Inspired by the close association between cyclooxygenase-2 (COX-2) and tumor-associated angiogenesis, as well as tumor matrix formation, we proposed that tumor microenvironment normalization by COX-2 inhibitors might improve the distribution and efficacy of nanotherapeutics for solid tumors. The present study represents the first time that celecoxib, a special COX-2 inhibitor widely used in clinics, was explored to normalize the tumor microenvironment and to improve tumor nanotherapeutics delivery using a human-derived A549 tumor xenograft as the solid tumor model.

View Article and Find Full Text PDF

Due to the rich stroma content and poor blood perfusion, pancreatic ductal adenocarcinoma (PDA) is a tough cancer that can hardly be effectively treated by chemotherapeutic drugs. Tumor microenvironment modulation or advanced design of nanomedicine to achieve better therapeutic benefits for PDA treatment was widely advocated by many reviews. In the present study, a new photothermal therapy strategy of PDA was developed by combination of tumor microenvironment modulation and advanced design of biomimetic gold nanorods.

View Article and Find Full Text PDF

In this study, we reported a strategy to improve delivery efficiency of a long-circulation biomimetic photothermal nanoagent for enhanced photothermal therapy through selectively dilating tumor vasculature. By using a simply nanocoating technology, a biomimetic layer of natural red blood cell (RBC) membranes was camouflaged on the surface of photothermal polypyrrole nanoparticles (PPy@RBC NPs). The erythrocyte-mimicking PPy NPs inherited the immune evasion ability from natural RBC resulting in superior prolonged blood retention time.

View Article and Find Full Text PDF

Photothermal therapy (PTT) has represented a promising noninvasive approach for cancer treatment in recent years. However, there still remain challenges in developing non-toxic and biodegradable biomaterials with high photothermal efficiency in vivo. Herein, we explored natural melanin nanoparticles extracted from living cuttlefish as effective photothermal agents and developed red blood cell (RBC) membrane-camouflaged melanin (Melanin@RBC) nanoparticles as a platform for in vivo antitumor PTT.

View Article and Find Full Text PDF

Chemotherapy is still the main adjuvant strategy after surgery in glioblastoma therapy. As the main obstacles of chemotherapeutic drugs for glioblastoma treatment, the blood brain barrier (BBB) and non-specific delivery to non-tumor tissues greatly limit the accumulation of drugs into tumor tissues and simultaneously cause serious toxicity to nearby normal tissues which altogether compromised the chemotherapeutic effect. In the present study, we established an aptamer AS1411-functionalized poly (l-γ-glutamyl-glutamine)-paclitaxel (PGG-PTX) nanoconjugates drug delivery system (AS1411-PGG-PTX), providing an advantageous solution of combining the precisely active targeting and the optimized solubilization of paclitaxel.

View Article and Find Full Text PDF

Echinomycin is a small-molecule inhibitor of hypoxia- inducible factor-1 DNA-binding activity, which plays a crucial role in ovarian ovulation in mammalians. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1α-mediated endothelin (ET)-2 expressions contributed to ovarian ovulation in response to human chorionic gonadotropin (hCG) during gonadotropin-induced superuvulation. By real-time RT-PCR analysis, ET-2 mRNA level was found to significantly decrease in the ovaries after echinomycin treatment, while HIF-1α mRNA and protein expression was not obviously changed.

View Article and Find Full Text PDF