Background: Histone modification H3K27me3 plays a critical role in normal development and is associated with various diseases, including cancer. This modification forms large chromatin domains, known as Large Organized Chromatin Lysine Domains (LOCKs), which span several hundred kilobases.
Result: In this study, we identify and categorize H3K27me3 LOCKs in 109 normal human samples, distinguishing between long and short LOCKs.
Proc Natl Acad Sci U S A
June 2024
Squamous cell carcinomas (SCCs) are common and aggressive malignancies. Immune check point blockade (ICB) therapy using PD-1/PD-L1 antibodies has been approved in several types of advanced SCCs. However, low response rate and treatment resistance are common.
View Article and Find Full Text PDFUnlike most cancer types, the incidence of esophageal adenocarcinoma (EAC) has rapidly escalated in the western world over recent decades. Using whole genome bisulfite sequencing (WGBS), we identify the transcription factor (TF) FOXM1 as an important epigenetic regulator of EAC. FOXM1 plays a critical role in cellular proliferation and tumor growth in EAC patient-derived organoids and cell line models.
View Article and Find Full Text PDFARID1A, a member of the chromatin remodeling SWI/SNF complex, is frequently lost in many cancer types, including esophageal adenocarcinoma (EAC). Here, we study the impact of ARID1A deficiency on the anti-tumor immune response in EAC. We find that EAC tumors with ARID1A mutations are associated with enhanced tumor-infiltrating CD8 T cell levels.
View Article and Find Full Text PDFBackground: As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging.
Results: We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes.
Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TG) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TG, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TG was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TG vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TG did not differ from WT.
View Article and Find Full Text PDFInactivation of the tumor suppressor genes tumor protein p53 () and cyclin-dependent kinase inhibitor 2A () occurs early during gastroesophageal junction (GEJ) tumorigenesis. However, because of a paucity of GEJ-specific disease models, cancer-promoting consequences of and inactivation at the GEJ have not been characterized. Here, we report the development of a wild-type primary human GEJ organoid model and a CRISPR-edited transformed GEJ organoid model.
View Article and Find Full Text PDFTumor organoid modeling has been recognized as a state-of-the-art system for in vitro research on cancer biology and precision oncology. Organoid culture technologies offer distinctive advantages, including faithful maintenance of physiological and pathological characteristics of human disease, self-organization into three-dimensional multicellular structures, and preservation of genomic and epigenomic landscapes of the originating tumor. These features effectively position organoid modeling between traditional cell line cultures in two dimensions and in vivo animal models as a valid, versatile, and robust system for cancer research.
View Article and Find Full Text PDFExposure to high levels of ionizing γ radiation leads to irreversible DNA damage and cell death. Here, we establish that exogenous application of electric stimulation enables cellular plasticity and the re-establishment of stem cell activity in tissues damaged by ionizing radiation. We show that subthreshold direct current stimulation (DCS) rapidly restores pluripotent stem cell populations previously eliminated by lethally γ-irradiated tissues of the planarian flatworm Schmidtea mediterranea.
View Article and Find Full Text PDFSpontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI).
View Article and Find Full Text PDFCa and transitions occurring throughout action potential (AP) cycles in sinoatrial nodal (SAN) cells are cues that (1) not only regulate activation states of molecules operating within criticality (Ca domain) and limit-cycle ( domain) mechanisms of a coupled-clock system that underlies SAN cell automaticity, (2) but are also regulated by the activation states of the clock molecules they regulate. In other terms, these cues are both causes and effects of clock molecular activation (recursion). Recently, we demonstrated that Ca and transitions during AP cycles in single SAN cells isolated from mice, guinea pigs, rabbits, and humans are self-similar (obey a power law) and are also self-similar to -species AP firing intervals (APFIs) of these cells , to heart rate , and to body mass.
View Article and Find Full Text PDFThe use of direct current electric stimulation (DCS) is an effective strategy to treat disease and enhance body functionality. Thus, treatment with DCS is an attractive biomedical alternative, but the molecular underpinnings remain mostly unknown. The lack of experimental models to dissect the effects of DCS from molecular to organismal levels is an important caveat.
View Article and Find Full Text PDFObjectives: The purpose of this study was to discover regulatory universal mechanisms of normal automaticity in sinoatrial nodal (SAN) pacemaker cells that are self-similar across species.
Background: Translation of knowledge of SAN automaticity gleaned from animal studies to human dysrhythmias (e.g.
Action potential (AP) firing rate and rhythm of sinoatrial nodal cells (SANC) are controlled by synergy between intracellular rhythmic local Ca releases (LCRs) ("Ca clock") and sarcolemmal electrogenic mechanisms ("membrane clock"). However, some SANC do not fire APs (dormant SANC). Prior studies have shown that β-adrenoceptor stimulation can restore AP firing in these cells.
View Article and Find Full Text PDFis one of the most common fungal pathogens of humans. Prior work introduced the planarian as a new model system to study the host response to fungal infection at the organismal level. In the current study, we analyzed host-pathogen changes that occurred during early infection with .
View Article and Find Full Text PDFIn the planarian field, two techniques are mostly used for protein detection: immunohistochemistry (IHC) and western blotting. While IHC is great for visualizing the spatial distribution of proteins in whole organisms, it has limitations in antibody availability and issues related to nonspecific expression. The use of western blotting can circumvent nonspecific expression, providing a dependable way to quantify proteins of interest.
View Article and Find Full Text PDFTissue homeostasis relies on the timely renewal of cells that have been damaged or have surpassed their biological age. Nonetheless, the underlying molecular mechanism coordinating tissue renewal is unknown. The planarian harbors a large population of stem cells that continuously divide to support the restoration of tissues throughout the body.
View Article and Find Full Text PDFRationale: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 () gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined.
View Article and Find Full Text PDFNutrient availability upon feeding leads to an increase in body size in the planarian However, it remains unclear how food consumption integrates with cell division at the organismal level. Here, we show that the NAD-dependent protein deacetylases sirtuins are evolutionarily conserved in planarians, and specifically demonstrate that the homolog of human sirtuin-1 (SIRT1) (encoded by ), regulates organismal growth by impairing both feeding behavior and intestinal morphology. Disruption of with RNAi or pharmacological inhibition of Sirtuin-1 leads to reduced animal growth.
View Article and Find Full Text PDFCurrent understanding of how cardiac pacemaker cells operate is based mainly on studies in isolated single sinoatrial node cells (SANC), specifically those that rhythmically fire action potentials similar to the in vivo behavior of the intact sinoatrial node. However, only a small fraction of SANC exhibit rhythmic firing after isolation. Other SANC behaviors have not been studied.
View Article and Find Full Text PDFThe spontaneous rhythmic action potentials generated by the sinoatrial node (SAN), the primary pacemaker in the heart, dictate the regular and optimal cardiac contractions that pump blood around the body. Although the heart rate of humans is substantially slower than that of smaller experimental animals, current perspectives on the biophysical mechanisms underlying the automaticity of sinoatrial nodal pacemaker cells (SANCs) have been gleaned largely from studies of animal hearts. Using human SANCs, we demonstrated that spontaneous rhythmic local Ca releases generated by a Ca clock were coupled to electrogenic surface membrane molecules (the M clock) to trigger rhythmic action potentials, and that Ca-cAMP-protein kinase A (PKA) signaling regulated clock coupling.
View Article and Find Full Text PDFAMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αβγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia).
View Article and Find Full Text PDF