Publications by authors named "Ziling Sun"

Developing injectable hydrogels with near-infrared (NIR)-responsive photothermal effects has increasingly become a promising strategy for local cancer treatment via combinational photothermal-chemotherapy. Herein, a biocompatible hydrogel with a remarkable shear-thinning and recovery capability for injection application was fabricated from 4-arm-PEG-SH and tannic acid through chemical crosslinking and multiple physical interactions. Benefiting from the formation of dynamic TA/Fe3+ complexes within gel networks, the obtained hydrogel exhibited an intrinsic NIR absorption property for photothermal ablation of tumor cells, and enhanced cellular uptake of chemotherapeutic drugs.

View Article and Find Full Text PDF

Drosophila TRP is a calcium-permeable cation channel essential for fly visual signal transduction. During phototransduction, Ca mediates both positive and negative feedback regulation on TRP channel activity, possibly via binding to calmodulin (CaM). However, the molecular mechanism underlying Ca modulated CaM/TRP interaction is poorly understood.

View Article and Find Full Text PDF

Exogenous silicon has been shown to enhance plant growth and alleviate heavy metals toxicity, but the regulation mechanism of silicon on cadmium migration and transformation in the soil-rice system is still unclear, which is worth further study. In this study, a pot experiment was carried out to explore the influence of different doses (0, 1 and 5%) of mineral silicon on soil properties, nutrient availability, rice growth, soil enzyme activities, Cd bioavailability, and uptake and accumulation of Cd in high-accumulating (H) and low-accumulating (L) rice cultivars grown in contaminated soils. Results showed that mineral-Si treatment could increase the total biomass and grain yield, with an increased rate of 17.

View Article and Find Full Text PDF

B7 homolog 6 (B7-H6), a new member of the B7 family, is identified as an activating ligand for cytotoxicity triggering receptor 3 (NKp30) expressing on natural killer cells. The purpose of this study was to investigate the clinical significance of B7-H6 in hepatocellular carcinoma (HCC). We evaluated B7-H6 expression by immunohistochemistry in a cohort of 90 HCC tumors with clinical follow-up, the potential relationship between the B7-H6 expression and the clinicopathological characteristics of HCC patients was also analyzed.

View Article and Find Full Text PDF

Background: Serum 1,5-anhydroglucitol (1,5-AG) is a new glycemic marker which can reflect glucose fluctuation over 3 to 7 days and is now increasingly used to monitor glucose control and to screen for diabetes. However, 1,5-AG has not been widely used in China due to lack of epidemiological support. Our study aims to establish the reference intervals for a population with normal glucose tolerance in Jiangsu Province and to explore the determinants of these intervals.

View Article and Find Full Text PDF

Background And Aims: Soluble E-cadherin (sE-cadherin) has been observed elevated in patients with various diseases, and implicated in the occurrence and development of those diseases. The implications of sE-cadherin in chronic hepatitis C virus (HCV) infection are still unclear. The purpose of this study is to explore the significance of sE-cadherin in chronic hepatitis C infection and the correlation with treatment response.

View Article and Find Full Text PDF

Emerging nanomedical strategy is to construct a nanoagent that affords not only diagnostic and therapeutic functions but also imaging-guided treatment. It is crucial to understand the in vivo biological processes of nanoagents for improving theranostic function and biosafety. Herein, we report a multimodal photoacoustic/single-photon emission computed tomography (SPECT) imaging technique to dynamically monitor the in vivo behaviors of nanoagents.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels are a group of essential cation channels involved in many important sensory signal transduction processes, such as light, temperature, tastes and pressure sensing. Drosophila TRP channel is the first discovered family member and plays important roles in photo-transduction in Drosophila. Calmodulin (CaM), an important downstream effector of Ca signal, was considered as a vital regulator of TRP activities.

View Article and Find Full Text PDF

Silk fibroin (SF) from Bombyx mori has received increasing interest in biomedical fields, because of its slow biodegradability, good biocompatibility, and low immunogenicity. Although SF-based hydrogels have been studied intensively as a potential matrix for tissue engineering, weak gelation performance and low mechanical strength are major limitations that hamper their widespread applicability. Therefore, searching for new strategies to improve the SF gelation property is highly desirable in tissue engineering research.

View Article and Find Full Text PDF

Protocadherins (Pcdhs) are widely-expressed transmembrane proteins in the nervous system. Recent studies suggest that Pcdhs play multiple critical roles during neuronal development. However, the cellular mechanisms of Pcdh7 in neurons are still largely unknown.

View Article and Find Full Text PDF

The construction of functional vascular networks in regenerative tissues is a crucial technology in tissue engineering to ensure the sufficient supply of nutrients. Although natural hydrogels are highly prevalent in fabricating three-dimensional scaffolds to induce neovascular growth, their widespread applicability was limited by the potential risk of immunogenicity or pathogen transmission. Therefore, developing hydrogels with good biocompatibility and cell affinity is highly desirable for fabricating alternative matrices for tissue regeneration applications.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. Recent studies employing microRNA-seq and genome-wide sequencing have identified some non-coding RNAs that are influentially involved in AD pathogenesis. Non-coding RNAs can compete with other endogenous RNAs by microRNA response elements (MREs) and manipulate biological processes, such as tumorigenesis.

View Article and Find Full Text PDF

In this work, we reported the generation of a novel supramolecular hydrogelator from a peptide derivative which consisted of a structural motif (e.g., Fc-FF) for supramolecular self-assembly and a functional moiety (e.

View Article and Find Full Text PDF

Self-assembled nanoparticles of the natural polymer, silk fibroin (SF), are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU) and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared.

View Article and Find Full Text PDF

Glycopeptide-based hydrogelators with well-defined molecular structures and varied contents of sugar moieties were prepared via in vitro peptide glycosylation reactions. With systematic glucose modification, these glycopeptide hydrogelators exhibited diverse self-assembling behaviors in water and formed supramolecular hydrogels with enhanced thermostability and biostability, in comparison with their peptide analogue. Moreover, because of high water content and similar structural morphology and composition to extracellular matrixes (ECM) in tissues, these self-assembled hydrogels also exhibited great potential to act as new biomimetic scaffolds for mammalian cell growth.

View Article and Find Full Text PDF

Here we report the generation of a novel gelator from a glycosylated amino acid derivative, which contained three structural units, an aromatic residue, a carbohydrate moiety and a tert-butyl group in a single molecule. These structural units can promote the supramolecular self-assembly of this gelator in both aprotic and protic solvents via coordinated π-π stacking, multiple hydrogen binding and van der Waals interactions. More importantly, due to their non-equilibrium natures, the organogels formed in DCM, chloroform and ethanol can undergo gel to crystal transition in storage, driven by unbalanced gelator-gelator and solvent-gelator interactions.

View Article and Find Full Text PDF

Porous silk fibroin films can provide an optimal microenvironment for angiogenesis in vivo. Adhesion and migration of human umbilical vein endothelial cells (HUVEC) on porous silk films were observed by confocal laser scanning microscopy. The expression of fibronectin (FN), laminins (LN), intercellular adhesion molecule-l (ICAM-1) and vascular cell adhesion molecule-l (VCAM-1) after implanting Porous Silk Fibroin Films (PSFFs) as grafts for dermis regeneration in rat were studied.

View Article and Find Full Text PDF

The purpose of this paper is to explore neovascularization in the biomaterials implanted in vivo. Capillaries formation of dermis defect filled with porous silk fibroin films (PSFFs) implant were investigated in rat at different times. Vascular endothelial growth factor (VEGF), CD34 and hypoxia inducible factor-1 (HIF) were observed in inflammatory cells and fibroblast in PSFFs by day 1, but expression in HIF and VEGF decreased by day 7, otherwise VEGF expressed in vascular endothelial cell increased by day 15 and 25, respectively.

View Article and Find Full Text PDF

The purpose of this paper is to explore the mechanism of the angiogenesis modes in the biomaterials implanted in vivo. By means of experimental observation and analysis of the capillary growing state in the porous silk fibroin film implanted into rats, we intended to develop a modeling expression on the growth mode of the capillaries in the biomaterials. Additionally, we proposed the response model of endothelial cells (ECs) resulting from vascular endothelial growth factor's concentrations at different stages after the implantation.

View Article and Find Full Text PDF