Publications by authors named "Ziling Luo"

Coordinated reset deep brain stimulation (CR DBS), a promising treatment for Parkinson's disease (PD), is hypothesized to desynchronize neuronal populations. However, little in vivo data probes this hypothesis. In a parkinsonian nonhuman primate, we found that subthalamic CR DBS suppressed subthalamic and cortical-subthalamic coherences in the beta band, correlating with motor improvements.

View Article and Find Full Text PDF

Introduction: Coordinated Reset Deep Brain Stimulation (CR DBS) is a novel DBS approach for treating Parkinson's disease (PD) that uses lower levels of burst stimulation through multiple contacts of the DBS lead. Though CR DBS has been demonstrated to have sustained therapeutic effects on rigidity, tremor, bradykinesia, and akinesia following cessation of stimulation, i.e.

View Article and Find Full Text PDF

Background: SET domain containing 6 (SETD6) has been shown to be upregulated in multiple human cancers and can promote malignant cell survival. However, expression and function of SETD6 in lung adenocarcinoma (LUAD) remains unaddressed. This study aimed to demonstrate the expression pattern, biological roles and potential mechanisms by which SETD6 dysregulation is associated with LUAD.

View Article and Find Full Text PDF

Objective: Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait.

Design: We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages.

View Article and Find Full Text PDF

When COVID-19 was raging around the world, people were more fearful and anxious. In this context, the media should uphold impartiality and shoulder the responsibility of eliminating misinformation. Therefore, our research adopted sentiment analysis technologies to analyze the impartiality of news agencies and analyzed the factors that affect the impartiality of COVID-19-related articles about various countries.

View Article and Find Full Text PDF

The key idea of the variable-metric approach to orbital localization is to allow nonorthogonality between orbitals while, at the same time, preventing them from becoming linearly dependent. The variable-metric localization has been shown to improve the locality of occupied nonorthogonal orbitals relative to their orthogonal counterparts. In this work, numerous localization algorithms are designed and tested to exploit the conceptual simplicity of the variable-metric approach with the goal of creating a straightforward and reliable localization procedure for virtual orbitals.

View Article and Find Full Text PDF

Visual imaging of long noncoding RNA (lncRNA) MEG3, a newfound regulator of transactivation and tumor growth suppression, is conducive to unlock the secrets of MEG3 in some important biological processes. Here, for the first time, we designed a DNA tetrahedron-based three-dimensional (3D) catcher for imaging cytoplasmic lncRNA MEG3 in living cells. The 3D catcher is composed of a triple-helix-forming dsDNA with capacity to bind the 5'-end GA-rich domain of the lncRNA MEG3 and four hairpin-shaped antisense sequences toward contiguous domain on MEG3.

View Article and Find Full Text PDF

Spatially localized one-electron orbitals, orthogonal and non-orthogonal, are widely used in electronic structure theory to describe chemical bonding and speed up calculations. In order to avoid linear dependencies of localized orbitals, the existing localization methods either constrain orbital transformations to be unitary, that is, metric preserving, or, in the case of variable-metric methods, fix the centers of non-orthogonal localized orbitals. Here, we developed a different approach to orbital localization, in which these constraints are replaced with a single restriction that specifies the maximum allowed deviation from the orthogonality for the final set of localized orbitals.

View Article and Find Full Text PDF

Selective binding of steroid molecules is of paramount importance for designing drugs that can target the biological pathways of only individual steroids. From this perspective, it is remarkable that progesterone (PRO) and pregnenolone (PRE), two structurally similar steroids, demonstrate a dramatically different propensity to interact with aromatic molecules. It has been recently reported that, in solid-state cocrystallization, PRO forms cocrystals with a wide variety of aromatic systems whereas PRE cocrystallizes only with a few.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontbi37ib9btv7tqv109ofb5298jd9e7s4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once