Large segmental bone defects often lead to nonunion and dysfunction, posing a significant challenge for clinicians. Inspired by the intrinsic bone defect repair logic of "vascularization and then osteogenesis", this study originally reports a smart implantable hydrogel (PDS-DC) with high mechanical properties, controllable scaffold degradation, and timing drug release that can proactively match different bone healing cycles to efficiently promote bone regeneration. The main scaffold of PDS-DC consists of polyacrylamide, polydopamine, and silk fibroin, which endows it with superior interfacial adhesion, structural toughness, and mechanical stiffness.
View Article and Find Full Text PDFA highly sensitive and selective electrochemical sensor modified with poly-(l-cysteine)/CuO nanoneedles/N-doped reduced graphene oxide (l-Cys/NN-CuO/N-rGO) has been prepared for the testing of trace Pb. The electrochemical performance of this proposed sensor was investigated using electrochemical impedance spectroscopy (EIS). Based on the excellent electrochemical properties of NN-CuO/N-rGO as well as the specific complexation of natural substance l-cysteine with Pb, the l-Cys/NN-CuO/N-rGO was applied as a voltammetric biosensor for the determination of trace Pb at pH 5.
View Article and Find Full Text PDF