Publications by authors named "Ziliang Ao"

Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1.

View Article and Find Full Text PDF

Objectives: β-cell dysfunction and apoptosis associated with islet inflammation play a key role in the pathogenesis of type 2 diabetes (T2D). Growing evidence suggests that islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to islet inflammation and β-cell death in T2D. We recently showed the role of interleukin-1β (IL-1β)/Fas/caspase-8 apoptotic pathway in amyloid-induced β-cell death.

View Article and Find Full Text PDF

Aims: Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation.

View Article and Find Full Text PDF

Worldwide efforts are underway to replace or repair lost or dysfunctional pancreatic β-cells to cure diabetes. However, it is unclear what the final product of these efforts should be, as β-cells are thought to be heterogeneous. To enable the analysis of β-cell heterogeneity in an unbiased and quantitative way, we developed model-free and model-based statistical clustering approaches, and created new software called TraceCluster.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts.

View Article and Find Full Text PDF

Aims/hypothesis: Reduced beta cell mass due to increased beta cell apoptosis is a key defect in type 2 diabetes. Islet amyloid, formed by the aggregation of human islet amyloid polypeptide (hIAPP), contributes to beta cell death in type 2 diabetes and in islet grafts in patients with type 1 diabetes. In this study, we used human islets and hIAPP-expressing mouse islets with beta cell Casp8 deletion to (1) investigate the role of caspase-8 in amyloid-induced beta cell apoptosis and (2) test whether caspase-8 inhibition protects beta cells from amyloid toxicity.

View Article and Find Full Text PDF

Objectives: B7-H4 is a negative coregulatory molecule known to be involved in immune response. We study here B7-H4 expression and its possible role in diabetes and cancer development.

Methods: Formalin-fixed, paraffin-processed pancreas samples from patients with type 1 diabetes (T1D), insulinoma, pancreatic ductal adenocarcinoma (PDAC), and normal organ donors were studied by bright-field and multifluorescence immunohistochemistry to examine B7-H4 expression and its colocalization with islet endocrine hormones.

View Article and Find Full Text PDF

The incretins, GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1) are gastrointestinal hormones conferring a number of beneficial effects on β-cell secretion, survival and proliferation. In a previous study, it was demonstrated that delayed rectifier channel protein Kv2.1 contributes to β-cell apoptosis and that the prosurvival effects of incretins involve Kv2.

View Article and Find Full Text PDF

Background: Allograft rejection is one of the main obstacles for islet transplantation. B7-H4 plays a key role in maintaining T-cell homeostasis by reducing T-cell proliferation and cytokine production. In this study, we investigated whether the endogenous expression of B7-H4 in β cells from B7-H4 transgenic mice enhances islet allograft survival.

View Article and Find Full Text PDF

Islet transplantation provides a promising approach for treatment of type 1 diabetes mellitus. Amyloid formation and loss of extracellular matrix are two nonimmune factors contributing to death of isolated human islets. We tested the effects of two types of three-dimensional scaffolds, collagen matrix (CM) and fibroblast-populated collagen matrix (FPCM), on amyloid formation, viability, and function of isolated islets.

View Article and Find Full Text PDF

Costimulation blockade is an effective way to prevent allograft rejection. In this study, we tested the efficacy of two negative co-signaling molecules in protecting islet allograft function. We used local expression of B7-H4 by adenoviral transduction of islets (Ad-B7-H4) and systemic administration of CTLA-4.

View Article and Find Full Text PDF

Diabetes is a chronic debilitating disease that results from insufficient production of insulin from pancreatic β-cells. Islet cell replacement can effectively treat diabetes but is currently severely limited by the reliance upon cadaveric donor tissue. We have developed a protocol to efficiently differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population that further develops in vivo to mature pancreatic endocrine cells.

View Article and Find Full Text PDF

Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell) source.

View Article and Find Full Text PDF

B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+) T cells with a B7-H4.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a chronic autoimmune disease and characterized by absolute insulin deficiency. β-cell replacement by islet cell transplantation has been established as a feasible treatment option for T1D. The two main obstacles after islet transplantation are alloreactive T-cell-mediated graft rejection and recurrence of autoimmune diabetes mellitus in recipients.

View Article and Find Full Text PDF

Objective: Autoimmune diabetes is a T cell-mediated disease in which insulin-producing β-cells are destroyed. Autoreactive T cells play a central role in mediating β-cell destruction. B7-H4 is a negative cosignaling molecule that downregulates T-cell responses.

View Article and Find Full Text PDF

Negative cosignaling molecules play an important role in regulating T-cell responses to alloantigen stimulation. We recently reported that adenoviral-mediated transduction of islet allografts with B7-H4 inhibits allograft rejection. In this study, we investigate the mechanism for B7-H4-induced prolongation of mouse islet allograft survival.

View Article and Find Full Text PDF

It has been predicted that one of the greatest increase in prevalence of diabetes will happen in the Middle East bear in the next decades. The aim of standard therapeutic strategies for diabetes is better control of complications. In contrast, some new strategies like cell and gene therapy have aimed to cure the disease.

View Article and Find Full Text PDF

Islet transplantation represents a viable treatment for type 1 diabetes. However, due to loss of substantial mass of islets early after transplantation, islets from two or more donors are required to achieve insulin independence. Islet-extracellular matrix disengagement, which occurs during islet isolation process, leads to subsequent islet cell apoptosis and is an important contributing factor to early islet loss.

View Article and Find Full Text PDF

Background: The effect of islet cell transplantation (ICT) on the progression of diabetic microvascular complications is not well understood.

Methods: We have conducted a prospective, crossover, cohort study comparing ICT with intensive medical therapy on the progression of diabetic nephropathy, retinopathy, and neuropathy.

Results: The rate of decline in glomerular filtration rate is slower after ICT than on medical therapy.

View Article and Find Full Text PDF

Objective: Differentiation of human embryonic stem (hES) cells to fully developed cell types holds great therapeutic promise. Despite significant progress, the conversion of hES cells to stable, fully differentiated endocrine cells that exhibit physiologically regulated hormone secretion has not yet been achieved. Here we describe an efficient differentiation protocol for the in vitro conversion of hES cells to functional glucagon-producing α- cells.

View Article and Find Full Text PDF

Diabetes is a devastating disease that is ultimately caused by the malfunction or loss of insulin-producing pancreatic beta-cells. Drugs capable of inducing the development of new beta-cells or improving the function or survival of existing beta-cells could conceivably cure this disease. We report a novel high-throughput screening platform that exploits multi-parameter high-content analysis to determine the effect of compounds on beta-cell survival, as well as the promoter activity of two key beta-cell genes, insulin and pdx1.

View Article and Find Full Text PDF

Background & Aims: Glucose-dependent insulinotropic polypeptide (GIP) and the proglucagon product glucagon-like peptide-1 (GLP-1) are gastrointestinal hormones that are released in response to nutrient intake and promote insulin secretion. Interestingly, a subset of enteroendocrine cells express both GIP and GLP-1. We sought to determine whether GIP also might be co-expressed with proglucagon in pancreatic alpha-cells.

View Article and Find Full Text PDF

Glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, insulin biosynthesis, and beta-cell proliferation and survival. In previous studies GIP was shown to promote beta-cell survival by modulating the activity of multiple signaling modules and regulating gene transcription of pro- and anti-apoptotic bcl-2 family proteins. We have now evaluated the mechanisms by which GIP regulates the dynamic interactions between cytoplasmic bcl-2 family members and the mitochondria in INS-1 cells during apoptosis induced by treatment with staurosporine (STS), an activator of the mitochondria-mediated apoptotic pathway.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is the result of the autoimmune response against pancreatic insulin-producing ss-cells. Its ultimate consequence is beta-cell insufficiency-mediated dysregulation of blood glucose control. In terms of T1D treatment, immunotherapy addresses the cause of T1D, mainly through re-setting the balance between autoimmunity and regulatory mechanisms.

View Article and Find Full Text PDF