Parasitic protozoa of the genus Leishmania cycle between the phagolysosome of mammalian macrophages, where they reside as rounded intracellular amastigotes, and the midgut of female sand flies, which they colonize as elongated extracellular promastigotes. Previous studies indicated that protein kinase A (PKA) plays an important role in the initial steps of promastigote differentiation into amastigotes. Here, we describe a novel regulatory subunit of PKA (which we have named PKAR3) that is unique to Leishmania and most (but not all) other Kinetoplastidae.
View Article and Find Full Text PDFHost cell functions that participate in the pharmacokinetics and pharmacodynamics (PK/PD) of drugs against intracellular pathogen infections are critical for drug efficacy. In this study, we investigated whether macrophage mechanisms of xenobiotic detoxification contribute to the elimination of intracellular upon exposure to pentavalent antimonials (Sb). Primary macrophages from patients with cutaneous leishmaniasis (CL) (n=6) were exposed to infection and Sb, and transcriptomes were generated.
View Article and Find Full Text PDFLeishmania, the causative agent of leishmaniasis, is an obligatory intracellular parasite that cycles between phagolysosome of mammalian macrophages, where it resides as round intracellular amastigotes, and the midgut of female sandflies, where it resides as extracellular elongated promastigotes. This protozoan parasite cytoskeleton is composed of stable and abundant subpellicular microtubules (SPMT). This study aims to determine the kinetics of developmental morphogenesis and assess whether microtubules remodelling is involved in this process.
View Article and Find Full Text PDFProtozoa of the genus Leishmania are intracellular parasites that cause human leishmaniasis, a disease spread mostly in the tropics and subtropics. Leishmania cycle between the midgut of female sand flies and phagolysosome of mammalian macrophages. During their life cycle they constantly encounter changing nutritional environments.
View Article and Find Full Text PDFPhagolysosomes of macrophages are the niche where the parasitic protozoan resides and causes human leishmaniasis. During infection, this organism encounters dramatic environmental changes. These include heat shock (from 26°C in the vector to 33°C or 37°C in the host, for cutaneous and visceral species, respectively) and acidic pH typical to the lysosome and nutrient availability.
View Article and Find Full Text PDFIn the 1990s my laboratory discovered that Leishmania promastigotes can combine two environmental cues, typical to lysosomes, acidic pH (~5.5) and body temperature (37 °C) into a single signal that induced differentiation. Based on this concept, we modified EARLS-based medium 199 to become an amastigote-specific medium.
View Article and Find Full Text PDFThe intracellular protozoan parasite Leishmania donovani causes human visceral leishmaniasis. Intracellular L. donovani that proliferate inside macrophage phagolysosomes compete with the host for arginine, creating a situation that endangers parasite survival.
View Article and Find Full Text PDFThis chapter describes, in detail, the method our laboratory developed to differentiate L. donovani promastigotes into amastigotes in a host-free culture. This method is based on previous observations that Leishmania promastigotes can combine two environmental signals, typical to lysosomes, acidic pH (~5.
View Article and Find Full Text PDFKinetoplastid parasites such as trypanosomes and Leishmania must adapt to their environments to survive within their hosts, yet they do not express many of the well established families of signal transduction receptors. Evidence suggests that other membrane proteins, including transporters and channels, play central roles in environmental sensing in these parasites.
View Article and Find Full Text PDFLeishmania are obligatory intracellular parasites that cycle between the sand fly midgut (extracellular promastigotes) and mammalian macrophage phagolysosomes (intracellular amastigotes). They have developed mechanisms of adaptation to the distinct environments of host and vector that favor utilization of both proline and alanine. LdAAP24 is the L.
View Article and Find Full Text PDFFor Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family.
View Article and Find Full Text PDFAmino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite.
View Article and Find Full Text PDFLong N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other.
View Article and Find Full Text PDFParasitic protozoa of the genus Leishmania are obligatory intracellular parasites that cycle between the phagolysosome of mammalian macrophages, where they proliferate as intracellular amastigotes, and the midgut of female sand flies, where they proliferate as extracellular promastigotes. Shifting between the two environments induces signaling pathway-mediated developmental processes that enable adaptation to both host and vector. Developmentally regulated expression and phosphorylation of protein kinase A subunits in Leishmania and in Trypanosoma brucei point to an involvement of protein kinase A in parasite development.
View Article and Find Full Text PDFMethods Mol Biol
July 2015
iTRAQ is a high coverage quantitative proteomics technique identifies and quantitates abundance changes of multiple (up to eight) distinct protein samples. To date, one iTRAQ-MS/MS assay can identify up to quarter of cells proteome. Each of the eight tags covalently binds to the N-terminus as well as arginine and lysine side chains of peptides, enabling labeling of the entire peptide population in each sample.
View Article and Find Full Text PDFThe aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.
View Article and Find Full Text PDFAmino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the up-take of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants.
View Article and Find Full Text PDFLeishmania are obligatory intracellular parasitic protozoa that cause a wide range of diseases in humans, cycling between extracellular promastigotes in the mid-gut of sand flies and intracellular amastigotes in the phagolysosomes of mammalian macrophages. Although many of the molecular mechanisms of development inside macrophages remain a mystery, the development of a host-free system that simulates phagolysosome conditions (37 °C and pH 5.5) has provided new insights into these processes.
View Article and Find Full Text PDFMembers of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp.
View Article and Find Full Text PDFObjectives: Treatment failure is multifactorial. Despite the importance of host cell drug transporters and metabolizing enzymes in the accumulation, distribution and metabolism of drugs targeting intracellular pathogens, their impact on the efficacy of antileishmanials is unknown. We examined the contribution of pharmacologically relevant determinants in human macrophages in the antimony-mediated killing of intracellular Leishmania panamensis and its relationship with the outcome of treatment with meglumine antimoniate.
View Article and Find Full Text PDFProtists of the genus Leishmania are obligatory intracellular parasites that cause a wide range of cutaneous, mucocutaneous, and visceral diseases in humans. They cycle between phagolysosomes of mammalian macrophages and the sand fly midgut, proliferating as intracellular amastigotes and extracellular promastigotes, respectively. Exposure to a lysosomal environment, i.
View Article and Find Full Text PDFThis study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves.
View Article and Find Full Text PDFUnlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane.
View Article and Find Full Text PDFLeishmania are obligatory intracellular parasitic protozoa that cycle between sand fly mid-gut and phagolysosomes of mammalian macrophages. They have developed genetically programmed changes in gene and protein expression that enable rapid optimization of cell function according to vector and host environments. During the last two decades, host-free systems that mimic intra-lysosomal environments have been devised in which promastigotes differentiate into amastigotes axenically.
View Article and Find Full Text PDF