Inelastic electron tunneling (IET), accompanied by energy transfer between the tunneling charge carriers and other elementary excitations, is widely used to investigate the collective modes and quasiparticles in solid-state materials. In general, the inelastic contribution to the tunneling current is small compared to the elastic part and is therefore only prominent in the second derivative of the tunneling current with respect to the bias voltage. Here we demonstrate a direct observation of the IET by measuring the photoresponse in a graphene-based vertical tunnel junction device.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
The photo-induced superconducting phase transition is widely used in probing the physical properties of correlated electronic systems and to realize broadband photodetection with extremely high responsivity. However, such photoresponse is usually insensitive to electrostatic doping due to the high carrier density of the superconductor, restricting its applications in tunable optoelectronic devices. In this work, we demonstrate the gate voltage modulation to the photoresponsivity in a two-dimensional NbSe-graphene heterojunction.
View Article and Find Full Text PDFTwo-dimensional (2D) magnetic materials provide an ideal platform for spintronics, magnetoelectrics, and numerous intriguing physical phenomena in 2D limits. Moiré superlattices based on 2D magnets offer an avenue for controlling the spin degree of freedom and engineering magnetic properties. However, the synthesis of high-quality, large-grain, and stable 2D magnets, much less obtaining a magnetic moiré superlattice, is still challenging.
View Article and Find Full Text PDF