We present a remote focusing optical tweezer utilizing a 4f symmetrical optical system to compensate the high-order aberration during annular light refocusing. The position of the optical trap can be adjusted beyond the range of one hundred micrometers in the axial direction by means of tuning the position of the mirror placed in the focal region of the illumination objective lens. This optical tweezer can be combined with a sectioning microscope to realize three-dimensional (3D) imaging, e.
View Article and Find Full Text PDFDark-field confocal microscopy (DFCM) facilitates the 3D detection and localization of surface and subsurface defects in high-precision optical components. The spatial resolution of conventional DFCM is commonly undermined owing to complementary aperture detection. We employed a radially polarized (RP) beam for illumination in DFCM.
View Article and Find Full Text PDFOptomechanical time-domain analysis (OMTDA) is a novel approach to measure distributed acoustic impedance of surrounding media with a high spatial resolution based on coherent forward stimulated Brillouin scattering probing. However, the spatial resolution is still limited by the polarization noise and influence of activation pulse. In this Letter, we propose a polarization separation based OMTDA to further improve the resolution.
View Article and Find Full Text PDFThis study proposes a dark-field confocal microscopy (DFCM) based on fiber-mode excitation-assisted orbital angular momentum annular beam generation with a two-mode fiber to avoid diffraction distortion. The application of optical fibers compresses the DFCM volume, providing new ideas for system miniaturization. System adjustment difficulty is reduced and feasibility is verified by imaging 2D and 3D samples.
View Article and Find Full Text PDF