Publications by authors named "Zijie Cheng"

Nitric oxide (NO) has been highlighted as an important factor in cardiovascular system. As a signaling molecule in the cardiovascular system, NO can relax blood vessels, lower blood pressure, and prevent platelet aggregation. Mitochondria serve as a central hub for cellular metabolism and intracellular signaling, and their dysfunction can lead to a variety of diseases.

View Article and Find Full Text PDF

Motility is one of the most critical features to evaluate sperm quality. As longitudinal rolling of human sperm has long been ignored until recently, its detailed dynamics and cellular biological mechanisms are still largely unknown. Here we report an optical-tweezers-based method to evaluate the chirality and frequency of sperm rotation.

View Article and Find Full Text PDF

Increasing evidence revealed that apoptosis and oxidative stress injury were associated with the pathophysiology of doxorubicin (DOX)-induced myocardial injury. ELABELA (ELA) is a newly identified peptide with 32 amino acids, can reduce hypertension with exogenous infusion. However, the effect of 11-residue furn-cleaved fragment (ELA-11) is still unclear.

View Article and Find Full Text PDF

Levosimendan and milrinone are 2 effective inotropic drugs used to maintain cardiac output in acute heart failure (AHF). Using data from patients with AHF with and without abnormal renal function, we performed this single-center, retrospective cohort study to compare the effectiveness and safety of milrinone and levosimendan for the initial management of AHF. Patients admitted for heart failure between December 2016 and September 2019 who received levosimendan or milrinone as initial inotrope therapy in the cardiology department were identified.

View Article and Find Full Text PDF

Myocardial ischemia-reperfusion (I/R) is a severe disease,but its underlying mechanism is not fully elucidated and no effective clinical treatment is available. Utilizing intracellular peptidomics, we identified a novel native peptide PDRL23A (Peptide Derived from RPL23A), that is intimately related to hypoxic stress. We further show that PDRL23A effectively alleviates hypoxia-induced cardiomyocyte injury in vitro, along with improvements in mitochondrial function and redox homeostasis, including ROS accumulation, oxidative phosphorylation, and mitochondrial membrane potential.

View Article and Find Full Text PDF

Recent studies have revealed that proper exercise can reduce the risk of chronic disease and is beneficial to the body. Peptides have been shown to play an important role in various pathological processes, including cardiovascular diseases. However, little is known about the role of exercise-induced peptides in cardiovascular disease.

View Article and Find Full Text PDF

Recent studies have revealed that exercise has myocardial protective effects, but the exact mechanism remains unclear. Studies have increasingly found that peptides play a protective role in myocardial ischaemia-reperfusion (I/R) injury. However, little is known about the role of exercise-induced peptides in myocardial I/R injury.

View Article and Find Full Text PDF

Oxidative stress serves a key role in doxorubicin (DOX)‑induced cardiotoxicity. The peptide Szeto‑Schiller (SS)31 is an efficacious antioxidant with the capacity to reduce mitochondrial reactive oxygen species (ROS) levels and scavenge free radicals. Although SS31 is involved in the pathophysiological process of various cardiovascular diseases, the role of SS31 in DOX‑induced cardiotoxicity remains unclear.

View Article and Find Full Text PDF

Aim: This study aimed to investigate the regulatory role of differentially-expressed circular RNAs (circRNAs) in mouse cardiomyocytes during doxorubicin (DOX)-induced cardiotoxicity.

Main Methods: Two groups of mice were injected with equal volumes (0.1 mL) of normal saline and DOX.

View Article and Find Full Text PDF

Doxorubicin (DOX) is limited due to dose-dependent cardiotoxicity. Peptidomics is an emerging field of proteomics that has attracted much attention because it can be used to study the composition and content of endogenous peptides in various organisms. Endogenous peptides participate in various biological processes and are important sources of candidates for drug development.

View Article and Find Full Text PDF

Objective: Artificial intelligence in healthcare increasingly relies on relations in knowledge graphs for algorithm development. However, many important relations are not well covered in existing knowledge graphs. We aim to develop a novel long-distance relation extraction algorithm that leverages the article section structure and is trained with bootstrapped noisy data to identify important relations for diagnosis, including may cause, may be caused by, and differential diagnosis.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common type of birth defect, and the leading cause of fetal mortality. The long noncoding RNA (lncRNA) uc.457 is differentially expressed in cardiac tissue from patients with a ventricular septal defect; however, its role in cardiac development and CHD remains unknown.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a life‑threatening disease and seriously influences patient quality of life. Long non‑coding RNAs (lncRNAs), an emerging class of non‑coding genes, have attracted attention in research, however, whether lncRNAs serve a function in acute ischemic hypoxia remains to be elucidated. In the present study, an lncRNA microarray was used to analyze differential lncRNA expression in acute ischemic hypoxia.

View Article and Find Full Text PDF

In previous studies, we have demonstrated that long noncoding RNA uc.4 may influence the cell differentiation through the TGF-β signaling pathway, suppressed the heart development of zebrafish and resulting cardiac malformation. DNA methylation plays a significant role in the heart development and disordered of DNA methylation may cause disruption of control of gene promoter.

View Article and Find Full Text PDF

In previous studies, we have demonstrated the function of uc.167 in the heart development. DNA methylation plays a crucial role in regulating the expression of developmental genes during embryonic development.

View Article and Find Full Text PDF

Objectives: Oxidative stress plays an important role in myocardial ischemia-reperfusion (I/R) injury. And pNaKtide is known to inhibit Na/K-ATPase/Src/reactive oxygen species (ROS) amplification signaling. Accordingly, we aimed to investigate the effect of pNaKtide on myocardial I/R injury.

View Article and Find Full Text PDF

In a previous study, we screened thousands of long non-coding RNAs (lncRNAs) to assess their potential relationship with congenital heart disease (CHD). In this study, uc.4 attracted our attention because of its high level of evolutionary conservation and its antisense orientation to the CASZ1 gene, which is vital for heart development.

View Article and Find Full Text PDF

Neonatal mouse hearts have completely regenerative capability after birth, but the ability to regenerate rapidly lost after 7 days, the mechanism has not been clarified. Previous studies have shown that mRNA profile of adult mouse changed greatly compared to neonatal mouse. So far, there is no research of peptidomics related to heart regeneration.

View Article and Find Full Text PDF

Background: Acute Myocardial Infarction (AMI) is a life-threatening cardiovascular disease involving disruption of blood flow to the heart, consequent tissue damage, and sometimes death. Peptidomics, an emerging branch of proteomics, has attracted wide attention.

Methods: A comparative peptidomic profiling was used to explore changes induced by acute ischemic-hypoxia in primary cultured neonatal rat myocardial cells.

View Article and Find Full Text PDF

Background: Ventricular septal defect (VSD) is one of the most common congenital heart diseases and to date the role of peptides in human amniotic fluid in the pathogenesis of VSD have been rarely investigated.

Methods: To gain insight into the mechanisms of protein and peptides in cardiovascular development, we constructed a comparative peptidomic profiling of human amniotic fluid between normal and VSD fetuses using a stable isobaric labeling strategy involving tandem mass tag reagents, followed by nano liquid chromatography tandem mass spectrometry.

Results: We identified and quantified 692 non-redundant peptides, 183 of which were differentially expressed in the amniotic fluid of healthy and VSD fetuses; 69 peptides were up regulated and 114 peptides were down regulated.

View Article and Find Full Text PDF