Publications by authors named "Zijian Bian"

For the RRT* algorithm, there are problems such as greater randomness, longer time consumption, more redundant nodes, and inability to perform local obstacle avoidance when encountering unknown obstacles in the path planning process of autonomous vehicles. And the artificial potential field method (APF) applied to autonomous vehicles is prone to problems such as local optimality, unreachable targets, and inapplicability to global scenarios. A fusion algorithm combining the improved RRT* algorithm and the improved artificial potential field method is proposed.

View Article and Find Full Text PDF

Increased pericardial adipose tissue (PEAT) is associated with a series of cardiovascular diseases (CVDs) and metabolic syndromes. Quantitative analysis of PEAT by means of image segmentation is of great significance. Although cardiovascular magnetic resonance (CMR) has been utilized as a routine method for non-invasive and non-radioactive CVD diagnosis, segmentation of PEAT in CMR images is challenging and laborious.

View Article and Find Full Text PDF

Background: Classifying T1-weighted Magnetic Resonance brain scans into cerebrospinal fluid, gray matter and white matter is one of the most critical tasks in neurodegenerative disease analysis. Since manual delineation is a labor-intensive and time-consuming process, automated methods have been widely adopted for this purpose. One group of commonly used method by biomedical researchers are based on Gaussian mixture model.

View Article and Find Full Text PDF

With the development of deep learning methods such as convolutional neural network (CNN), the accuracy of automated pulmonary nodule detection has been greatly improved. However, the high computational and storage costs of the large-scale network have been a potential concern for the future widespread clinical application. In this paper, an alternative Multi-ringed (MR)-Forest framework, against the resource-consuming neural networks (NN)-based architectures, has been proposed for false positive reduction in pulmonary nodule detection, which consists of three steps.

View Article and Find Full Text PDF

The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications.

View Article and Find Full Text PDF