Acute pancreatitis (AP) is characterized by autodigestion of the pancreas, and some patients may rapidly progress to systemic inflammation, pancreatic necrosis, and multi-organ failure. Numerous studies have detailed the bidirectional communication networks between the pancreas and the intestinal microbiota, as well as its metabolites. Such crosstalk affects the progression of AP and recovery through intestinal barrier disruption.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the central nervous system (CNS), with its etiology still shrouded in uncertainty. The interplay of extracellular amyloid-β (Aβ) deposition, intracellular neurofibrillary tangles (NFTs) composed of tau protein, cholinergic neuronal impairment, and other pathogenic factors is implicated in the progression of AD.
Objective: The current study endeavors to delineate the proteomic landscape alterations in the hippocampus of an AD murine model, utilizing proteomic analysis to identify key physiological and pathological shifts induced by the disease.
Mounting evidence suggests that circular RNAs play important roles in the development and progression of cancers. However, their function in glioblastomas (GBM) is still unclear. By circRNA array analysis, we found that circXPO1 (hsa_circ_102737) was significantly upregulated in GBM, and qPCR analysis verified that the circXPO1 expression level was increased in both GBM tissues and cell lines.
View Article and Find Full Text PDF