Introduction: Predicting the efficacy of neoadjuvant immunochemotherapy (NICT) for esophageal squamous cell carcinoma (ESSC) prior to surgery can minimize unnecessary surgical interventions and facilitate personalized treatment strategies. Our goal is to develop and validate an image-based radiomic model using preoperative computed tomography (CT) scans and clinical data to predict pathological complete response (pCR) in resectable ESSC following neoadjuvant immunotherapy.
Methods: We retrospectively collected data from patients diagnosed with ESCC at the First Affiliated Hospital of Soochow University between January 2018 and May 2023, who received preoperative neoadjuvant immunochemotherapy.
Iran J Basic Med Sci
January 2024
J Cardiothorac Surg
September 2024
Background: Molecularly targeted therapies have recently become a hotspot in the treatment of LUAD, with ongoing efforts to identify new effective targets due to individual variability. Among these potential targets, the mitochondrial transcription elongation factor (TEFM) stands out as a crucial molecule involved in mitochondrial synthetic transcriptional processing. Dysregulation of TEFM has been implicated in the development of various diseases; however, its specific role in LUAD remains unclear.
View Article and Find Full Text PDFBackground: Pleural solitary fibrous tumors (pSFTs) are rare mesenchymal pleural tumors with rich vascularity. Surgical resection is the cornerstone of pSFTs treatment, requiring careful preoperative imaging to delineate lesion extent and vascular supply including contrast-enhanced computed tomography and other examinations depending on its size and characteristics.
Case Presentation: The patient was a 34-year-old female with a mass measuring approximately 67 × 42 × 65 mm in the left posterior mediastinum.
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration.
View Article and Find Full Text PDFBackground: Diabetic nephropathy (DN) is one of the serious microvascular complications of diabetes mellitus (DM). A growing body of research has demonstrated that the inflammatory state plays a critical role in the incidence and development of DN. Pyroptosis is a new way of programmed cell death, which has the particularity of natural immune inflammation.
View Article and Find Full Text PDFWe built a portable microchip electrophoresis heavy metal ion detection system and proposed a pH-mediated field amplified sample stacking (pH-mediated FASS) online preconcentration method. The pH-mediated FASS focuses and stacks heavy metal cations by controlling electrophoretic mobilities with a pH change between the analyte and the background electrolyte (BGE) in solution to improve the detection sensitivity of the system. We optimized and adjusted sample matrix solution (SMS) ratios and pH to create concentration and pH gradients for SMS and BGE.
View Article and Find Full Text PDFThe structural coloration of arthropods often arises from helicoidal structures made primarily of chitin. Although it is possible to achieve analogous helicoidal architectures by exploiting the self-assembly of chitin nanocrystals (ChNCs), to date no evidence of structural coloration has been reported from such structures. Previous studies are identified to have been constrained by both the experimental inability to access sub-micrometer helicoidal pitches and the intrinsically low birefringence of crystalline chitin.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is one of the prevalent and deadly cancers worldwide. Cisplatin (CDDP) has been used as a standard adjuvant therapy for advanced NSCLC patients, while chemoresistance is one of the most challenging problems to limit its clinical application. Our data showed that the expression of visfatin was significantly increased in CDDP resistant NSCLC cells as compared with that in their parental cells, while knockdown of visfatin or its neutralization antibody can restore the CDDP sensitivity of resistant NSCLC cells.
View Article and Find Full Text PDFThe fabrication of thin films comprising ordered nanowire assemblies with emerging, precisely defined properties and adjustable functionalities enables highly integrated technologies in the fields of microelectronics and micro system technology, as well as for efficient power generation, storage, and utilization. Shear force, theoretically, is deemed the most promising method for obtaining in-plane, uniaxial thin films comprising nanowires. The success depends largely on the assembly process, and uniform structural control throughout multiple length scales can be achieved only if a rational strategy is executed.
View Article and Find Full Text PDFAlthough challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.
View Article and Find Full Text PDFThe environmental behaviors and migration patterns of antibiotic resistance genes (ARGs) have attracted considerable research interest. However, there has been little research concerning the effects of corresponding and non-corresponding contaminants on the fate of ARGs in coastal environments. In the present study, the distribution of intI1, sul1, sul2, qnrS and aac(6')-Ib were analyzed in water and sediment samples of Laizhou Bay in the context of corresponding and non-corresponding contaminants.
View Article and Find Full Text PDFEnviron Pollut
January 2018
Antibiotic resistance is a worsening global concern, and the environmental behaviors and migration patterns of antibiotic resistance genes (ARGs) have attracted considerable interest. Understanding the long-range transport of ARG pollution is crucial. In this study, we characterized the dynamics of ARG changes after their release into aquatic environments and demonstrated the importance of traditional chemical contaminants in the transmission mechanisms of ARGs.
View Article and Find Full Text PDFA key requirement for the understanding of crystal growth is to detect how new layers form and grow at the nanoscale. Multistage crystallization pathways involving liquid-like, amorphous or metastable crystalline precursors have been predicted by theoretical work and have been observed experimentally. Nevertheless, there is no clear evidence that any of these precursors can also be relevant for the growth of crystals of organic compounds.
View Article and Find Full Text PDFWith the exacerbating problem of antibiotic resistance, antibiotic resistance genes (ARGs) as emerging contaminants are found at elevated levels in inland aquatic environments, especially in regions of intensive agricultural and urban activity. However, little quantitative data exist on the migration and attenuation of ARGs in estuary ecosystem, which is central to predicting their fate after release into marine environment. Moreover, the relevance of multiple chemical contaminants and water quality constituents should be understood to amplify and attenuate antibiotic resistance levels.
View Article and Find Full Text PDFAntibiotic resistance gene (ARG) residues and the mode of transmission in marine environments remain unclear. The sulfonamide (SAs) concentrations, different genes and total bacterial abundance in seawater and sediment of the Northern Yellow Sea were analyzed. Results showed the genes sul I and sul II were present at relatively high concentrations in all samples, whereas the gene sul III was detected fewer.
View Article and Find Full Text PDF