Manipulation C-C coupling pathway is of great importance for selective CO electroreduction but remain challenging. Herein, two model Cu-based catalysts, by modifying Cu nanowires with Ag nanoparticles (AgCu NW) and Ag single atoms (AgCu NW), respectively, are rationally designed for exploring the C-C coupling mechanisms in electrochemical CO reduction reaction (CORR). Compared to AgCu NW, the AgCu NW exhibits a more than 10-fold increase of C selectivity in CO reduction to ethanol, with ethanol-to-ethylene ratio increased from 0.
View Article and Find Full Text PDFRealizing an efficient turnover frequency in the acidic oxygen evolution reaction by modifying the reaction configuration is crucial in designing high-performance single-atom catalysts. Here, we report a "single atom-double site" concept, which involves an activatable inert manganese atom redox chemistry in a single-atom Ru-Mn dual-site platform with tunnel Ni ions as the trigger. In contrast to conventional single-atom catalysts, the proposed configuration allows direct intramolecular oxygen coupling driven by the Ni ions intercalation effect, bypassing the secondary deprotonation step instead of the kinetically sluggish adsorbate evolution mechanism.
View Article and Find Full Text PDFThe poor durability of Ru-based catalysts limits the practical application in proton exchange membrane water electrolysis (PEMWE). Here, we report that the asymmetric active units in RuMO (M = Sb, In, and Sn) binary solid solution oxides are constructed by introducing acid-resistant p-block metal sites, breaking the activity and stability limitations of RuO in acidic oxygen evolution reaction (OER). Constructing highly asymmetric Ru-O-Sb units with a strong electron delocalization effect significantly shortens the spatial distance between Ru and Sb sites, improving the bonding strength of the overall structure.
View Article and Find Full Text PDFSingle-atom catalysts exhibit superior CO -to-CO catalytic activity, but poor kinetics of proton-coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe-P atom paired catalyst onto nitrogen doped graphitic layer (Fe /PNG) to accelerate PCET step. Fe /PNG delivers an industrial CO current of 1 A with FE over 90 % at 2.
View Article and Find Full Text PDFIn this study, vitrification was applied to treat Ni-Cu electroplating sludge. The sludge was mixed with additives (limestone:cullet = 4:6) and then heated to 1450 °C. The cooled product could be separated into slag and ingot.
View Article and Find Full Text PDF