Host-microbe interactions are virtually bidirectional, but how the host affects their microbiome is poorly understood. Here, we report that the host is a critical modulator to regulate the lifestyle switch and pathogenicity heterogeneity of the opportunistic pathogens utilizing the and bacterium model system. First, we find that larvae efficiently outcompete and typically drive a bacterial switch from pathogenicity to commensalism toward the fly.
View Article and Find Full Text PDFBackground: Exposure to extreme cold or heat temperature is one leading cause of weather-associated mortality and morbidity in animals. Emerging studies demonstrate that the microbiota residing in guts act as an integral factor required to modulate host tolerance to cold or heat exposure, but common and unique patterns of animal-temperature associations between cold and heat have not been simultaneously examined. Therefore, we attempted to investigate the roles of gut microbiota in modulating tolerance to cold or heat exposure in mice.
View Article and Find Full Text PDFDifferent valence states of copper (Cu) ions are involved in complicated redox reactions , which are closely related to tumor proliferation and death pathways, such as cuproptosis and chemodynamic therapy (CDT). Cu ion mediated Fenton-like reagents induced tumor cell death which presents compelling attention for the CDT of tumors. However, the superiority of different valence states of Cu ions in the antitumor effect is unknown.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) stem from alterations in the intestinal immune system and microbial dysbiosis, but the precise interactions between bacteria and IBD remain obscure. The commensal microbiota have a profound impact on human health and diseases. Here, we developed a selective culture medium for lactate-utilizing bacteria (LUB) that function as candidate probiotics to ameliorate IBD using a mouse model.
View Article and Find Full Text PDF