Continued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the () gene to assess the performance of community-submitted predictions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established and recently released models.
View Article and Find Full Text PDFSmoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability in complex use environments to ensure the timeliness, accuracy, and reliability of very early fire detection. The improvement and innovation of the principle and algorithm for smoke particle concentration detection provide opportunities for improving the performance of the detector. This study represents a new refinement of the smoke concentration detection principle based on capacitive detection of cell structures, and detection signals are processed by a multiscale smoke particle concentration detection algorithm to calculate smoke concentration.
View Article and Find Full Text PDFSmoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability in complex use environments to ensure the timeliness, accuracy, and reliability of very early fire detection. The improvement in and innovation of the principle and algorithm of smoke particle concentration detection provide an opportunity for the performance improvement in the detector. This study is a new refinement of the smoke concentration detection principle based on capacitive detection of cell structures, and detection signals are processed by a multiscale smoke particle concentration detection algorithm to calculate particle concentration.
View Article and Find Full Text PDF