Publications by authors named "Zigan Zhen"

We explore the properties of run-and-tumble particles moving in a piecewise-linear "ratchet" potential by deriving analytic results for the system's steady-state probability density, current, entropy production rate, extractable power, and thermodynamic efficiency. The ratchet's broken spatial symmetry rectifies the particles' self-propelled motion, resulting in a positive current that peaks at finite values of the diffusion strength, ratchet height, and particle self-propulsion speed. Similar nonmonotonic behavior is also observed for the extractable power and efficiency.

View Article and Find Full Text PDF

We introduce a procedure to test a theory for point particle entity, that is, whether said theory takes into account the discrete nature of the constituents of the system. We then identify the mechanism whereby particle entity is enforced in the context of two field-theoretic frameworks designed to incorporate the particle nature of the degrees of freedom, namely the Doi-Peliti field theory and the response field theory that derives from Dean's equation. While the Doi-Peliti field theory encodes the particle nature at a very fundamental level that is easily revealed, demonstrating the same for Dean's equation is more involved and results in a number of surprising diagrammatic identities.

View Article and Find Full Text PDF

The rate of entropy production by a stochastic process quantifies how far it is from thermodynamic equilibrium. Equivalently, entropy production captures the degree to which global detailed balance and time-reversal symmetry are broken. Despite abundant references to entropy production in the literature and its many applications in the study of non-equilibrium stochastic particle systems, a comprehensive list of typical examples illustrating the fundamentals of entropy production is lacking.

View Article and Find Full Text PDF