Environment-friendly antisolvents are critical for obtaining highly efficient, reproducible, and sustainable perovskite solar cells (PSCs). Here, we introduced a green mixture antisolvent of ethyl acetate-isopropanol (EA/IPA) to finely regulate the crystal grain growth and related film properties, including the morphology, crystal structure, and chemical composition of the perovskite thin film. The IPA with suitable content in EA plays a key role in achieving a smooth and compact high-quality perovskite thin film, leading to the suppression of film defect-induced nonradiative recombination.
View Article and Find Full Text PDFNiO-based inverted perovskite solar cells (PSCs) have presented great potential toward low-cost, highly efficient and stable next-generation photovoltaics. However, the presence of energy-level mismatch and contact-interface defects between hole-selective contacts (HSCs) and perovskite-active layer (PAL) still limits device efficiency improvement. Here, we report a graded configuration based on both interface-cascaded structures and p-type molecule-doped composites with two-/three-dimensional formamidinium-based triple-halide perovskites.
View Article and Find Full Text PDF