Publications by authors named "Ziga Lesjak"

Multiple sclerosis (MS) is a neurological disease characterized by focal lesions and morphological changes in the brain captured on magnetic resonance (MR) images. However, extraction of the corresponding imaging markers requires accurate segmentation of normal-appearing brain structures (NABS) and the lesions in MR images. On MR images of healthy brains, the NABS can be accurately captured by MR intensity mixture models, which, in combination with regularization techniques, such as in Markov random field (MRF) models, are known to give reliable NABS segmentation.

View Article and Find Full Text PDF

Quantified volume and count of white-matter lesions based on magnetic resonance (MR) images are important biomarkers in several neurodegenerative diseases. For a routine extraction of these biomarkers an accurate and reliable automated lesion segmentation is required. To objectively and reliably determine a standard automated method, however, creation of standard validation datasets is of extremely high importance.

View Article and Find Full Text PDF

Changes of white-matter lesions (WMLs) are good predictors of the progression of neurodegenerative diseases like multiple sclerosis (MS). Based on longitudinal magnetic resonance (MR) imaging the changes can be monitored, while the need for their accurate and reliable quantification led to the development of several automated MR image analysis methods. However, an objective comparison of the methods is difficult, because publicly unavailable validation datasets with ground truth and different sets of performance metrics were used.

View Article and Find Full Text PDF