To enhance the interfacial property, carbon fiber (CF) was modified with graphene oxide (GO) using a layer-by-layer self-assembly method and subsequently incorporated into phosphate bonded coatings as a reinforcement. CF modified with GO (CF-GO) was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, Raman spectroscopy, and thermogravimetric analysis. Additionally, the tribological behavior of phosphate bonded coatings with CF-GO was investigated.
View Article and Find Full Text PDFSilicon rubber has been widely used in the biomedical field due to its excellent mechanical properties and physiological inertia. However, the hydrophobic properties of silicon rubber surfaces limit their further application. Therefore, constructing a silicon rubber coating with hydrophilic and low-friction surface properties would be highly significant.
View Article and Find Full Text PDFRecently, there has been increasing interest in modifying ultra-high molecular weight polyethylene (UHMWPE) due to glaring needs in the artificial joint replacement field. It is generally reported in the literature that irradiation cross-linking and adding graphene oxide (GO)/vitamin E (VE) can enhance the mechanical properties of UHMWPE, but this can sacrifice the oxidation stability and gel content. This paper examines how VE diffusion can influence irradiation cross-linked GO/UHMWPE composites and whether mechanical performance and oxidation resistance can be maintained simultaneously, which will provide new guidance for prolonging the longevity of UHMWPE implants.
View Article and Find Full Text PDF