Stimulus electro-responsive polymer materials can reversibly change their physical or chemical properties under various external stimuli such as temperature, light, force, humidity, pH, and magnetic fields. This review introduces typical conventional stimulus electro-responsive polymer materials and extensively explores novel directions in the field, including multi-stimuli electro-responsive polymer materials and humidity electro-responsive polymer materials pioneered by our research group. Despite significant advancements in stimulus electro-responsive polymer materials, ongoing research focuses on enhancing their efficiency, lifespan, and production costs.
View Article and Find Full Text PDFBinocular matching models serve as the core component in most stereo visual aid systems developed for people with visual impairments. However, purely computational models lack a neuro-biological basis for explaining the phenomena observed in neuro-biology, and therefore offer no support for the development of bioengineering applications, and are overly complex for hardware implementation. In contrast, existing neurobiological models suffer from low matching calculation accuracy.
View Article and Find Full Text PDF