ACS Appl Mater Interfaces
September 2022
Rechargeable Zn batteries are widely studied as aqueous, safe, and environmentally friendly alternatives to Li-ion batteries. The 3D porous Zn anode has been extensively reported for suppressing Zn dendrite growth and accelerating the electrode kinetics. However, we demonstrate herein that the undesirable hydrogen evolution reaction (HER) is also exacerbated for porous Zn electrode.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Fabric-based wearable electronics are showing advantages in emerging applications in wearable devices, Internet of everything, and artificial intelligence. Compared to the one with organic materials, devices based on inorganic semiconductors (e.g.
View Article and Find Full Text PDFSoft ionic conductors show great promise in multifunctional iontronic devices, but currently utilized gel materials suffer from liquid leakage or evaporation issues. Here, a dry ion-conducting elastomer with dynamic crosslinking structures is reported. The dynamic crosslinking structures endow it with combined advantageous properties simultaneously, including high ionic conductivity (2.
View Article and Find Full Text PDFDistributed renewable kinetic energies are ubiquitous but with irregular amplitudes and frequencies, which, as one category of "high-entropy" energies, are crucial for next-generation self-powered electronics. Herein, we present a flexible waterproof dual-mode textile triboelectric nanogenerator (TENG), which can simultaneously scavenge multiple "high-entropy" kinetic energies, including human motions, raindrops, and winds. A freestanding-mode textile TENG (F-TENG) and a contact-separation-mode textile TENG (CS-TENG) are integrated together.
View Article and Find Full Text PDFFiber-shaped Zn batteries are promising candidates for wearable electronics owing to their high energy and low cost, but further studies are still required to address the issues related to detrimental Zn dendrite growth and limited low-temperature performances. Here, we report an antifreeze, long-life, and dendrite-free fiber-shaped Zn battery using both nanoporous Zn and polyaniline (PANI) electrodeposited on carbon nanofibers (CFs) as the cathode and anode, respectively. The fiber-shaped Zn anode achieves stable plating/stripping for 1000 mAh cm accumulative capacity with low polarization (30 mV) at a current density of 2 mA cm.
View Article and Find Full Text PDFThe integration between energy-harvesting and energy-storage devices into a self-charging power unit is an effective approach to address the energy bottleneck of wearable/portable/wireless smart devices. Herein, we demonstrate a stretchable coplanar self-charging power textile (SCPT) with triboelectric nanogenerators (TENGs) and microsupercapacitors (MSCs) both fabricated through a resist-dyeing-analogous method. The textile electrodes maintain excellent conductivity at 600% and 200% tensile strain along course and wale directions, respectively.
View Article and Find Full Text PDFThe viable application of soft electronics/robotics relies on the development of power devices which are desired to be flexible, deformable, or even self-healable. We report here a shape-adaptive, self-healable triboelectric nanogenerator (SS-TENG) for harvesting biomechanical energies. The use of a viscoelastic polymer, normally known as Silly Putty, as the electrification material and as the matrix of a carbon-nanotube-filled composite (CNT-putty) electrode endows the SS-TENG the capability of adapting to arbitrary irregular surfaces and instantaneous healing from mechanical damage (almost completely recovered in 3 min without extra stimuli).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
The progress of electronic textiles relies on the development of sustainable power sources without much sacrifice of convenience and comfort of fabrics. Herein, we present a rechargeable textile alkaline Zn microbattery (micro-AZB) fabricated by a process analogous to traditional resist-dyeing techniques. Conductive patterned electrodes are realized first by resist-aided electroless/electrodeposition of Ni/Cu films.
View Article and Find Full Text PDFRed phosphorus has received remarkable attention as a promising anode material for sodium ion batteries (NIBs) due to its high theoretical capacity. However, its practical application has been impeded by its intrinsic low electronic conductivity and large volume variations during sodiation/desodiation process. Here, we design a composite to confine nanosized red phosphorus into the hierarchically porous carbon (HPC) walls by a vaporization-condensation strategy.
View Article and Find Full Text PDFA major challenge accompanying the booming next-generation soft electronics is providing correspondingly soft and sustainable power sources for driving such devices. Here, we report stretchable triboelectric nanogenerators (TENG) with dual working modes based on the soft hydrogel-elastomer hybrid as energy skins for harvesting biomechanical energies. The tough interfacial bonding between the hydrophilic hydrogel and hydrophobic elastomer, achieved by the interface modification, ensures the stable mechanical and electrical performances of the TENGs.
View Article and Find Full Text PDF