Publications by authors named "Zienab E Eldin"

Article Synopsis
  • The increasing presence of pharmaceutical residues threatens ecosystems, highlighting the need for effective materials to absorb these contaminants; waste eggshells serve as a potential recyclable resource for creating valuable adsorbents.
  • CaO-based ZnFe-layered double hydroxide is shown to be a promising adsorbent for caffeine, demonstrating biodegradability, minimal toxicity to human cells, and strong antimicrobial properties against various bacteria.
  • The study evaluated various factors affecting adsorption efficiency and confirmed the materials’ efficacy through multiple analytical techniques, supporting sustainable development and zero-waste initiatives.
View Article and Find Full Text PDF

The current study inspects the therapeutic effects of orally ingested insulin-loaded chitosan nanobeads (INS-CsNBs) with a pectin-dextrin (PD) coating on streptozotocin (STZ)-induced diabetes in Wistar rats. The study also assessed antioxidant effects in pancreatic tissue homogenate, insulin, C-peptide, and inflammatory markers interleukin-1 beta and interleukin-6 (IL-1β and IL-6) in serum. Additionally, histopathological and immunohistochemical examination of insulin granules, oxidative stress, nuclear factor kappa B (NF-κB P65), and sirtuin-1 (SIRT-1) protein detection, as well as gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl2), and Bcl-2-associated X protein (Bax) in pancreatic tissue were investigated.

View Article and Find Full Text PDF

Bacterial resistance to conventional antibiotics has created an urgent need to develop enhanced alternatives. Nanocomposites combined with promising antibacterial nanomaterials can show improved antimicrobial activity compared to that of their components. In this work, green synthesized CuO nanoparticles (NPs) supported on an anionic clay with a hydrotalcite-like structure such as Zn-Al layered double hydroxide (LDH) nanocomposite were investigated as antimicrobial agents.

View Article and Find Full Text PDF

Introduction: Cancers are regarded as hazardous due to their high worldwide death rate, with breast cancer (BC), which affects practically all cancer patients globally, playing a significant role in this statistic. The therapeutic approach for BC has not advanced using standard techniques, such as specialized naringin (NG) chemotherapy. Instead, a novel strategy has been utilized to enhance smart drug delivery (SDD) to tumors.

View Article and Find Full Text PDF

Introduction: Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy.

Significance: Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effectiveness of different extraction methods to obtain total phenolic content (TPC) from Commiphora gileadensis (Cg) leaves, finding that integrated ultrasonic-microwave-assisted extraction (US/MICE) yielded the highest TPC level of 59.34 mg GAE/g DM.
  • It also assessed the antioxidant activity and identified various metabolites (60 out of 64 peaks annotated), highlighting polyphenols and other organic compounds prevalent in the extract, which can be beneficial for pharmaceutical applications.
  • Furthermore, the research demonstrated that silver nanoparticles (Cg-AgNPs) synthesized from the extract exhibited antibacterial properties against harmful bacteria like S. aureus and E. coli, suggesting potential use in biomedical materials due
View Article and Find Full Text PDF

The increase in antibiotic residues poses a serious threat to ecological and aquatic environments, necessitating the development of cost-effective, convenient, and recyclable adsorbents. In our study, we used cellulose-based layered double hydroxide (LDH) as an efficient adsorbent and nanocarrier for both sulfamethoxazole (SMX) and cefixime (CFX) residues due to their biodegradability and biocompatibility. Chemical processes are measured according to green chemistry metrics to identify which features adhere to the principles.

View Article and Find Full Text PDF

Layered double hydroxides (LDH) are promising 2D nanomaterials being investigated for several engineering and biomedical applications. In this work, quinary Zr Al Fe Co Ni LDH and its Al Fe Co Ni LDH quaternary and Fe Co Ni LDH tertiary roots were prepared and characterized. All samples showed an aggregated, layered morphology with zero surface charge and approximately 300 nm of hydrodynamic size.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. a common bacterium, can cause ALI through its virulence factors. is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties.

View Article and Find Full Text PDF

Fluoxetine (FLX) is one of the most persistent pharmaceuticals found in wastewater due to increased use of antidepressant drugs in recent decades. In this study, a nanocomposite of ternary ZnCoAl layered double hydroxide supported on activated carbon (LAC) was used as an adsorbent for FLX in wastewater effluents. The nanocomposite was characterized using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis (BET).

View Article and Find Full Text PDF

The emergence of antibiotic-resistant and phage-resistant strains of Mycobacterium tuberculosis (M. tuberculosis) necessitates improving new therapeutic plans. The objective of the current work was to ensure the effectiveness of rifampicin and the mycobacteriophage LysB D29 (LysB)enzyme in the treatment of multi-drug resistant tuberculosis (MDR-TB) infection, where new and safe metal-organic framework (MOF) nanoparticles were used in combination.

View Article and Find Full Text PDF

Novel biocompatible and effective hyperthermia (HT) treatment materials for breast cancer therapeutic have recently attracting researchers, because of their effective ablation of cancer cells and negligible damage to healthy cells. Magnetoliposome (MLs) have numerous possibilities for utilize in cancer treatment, including smart drug delivery (SDD) mediated through alternating magnetic fields (AMF). In this work, magnesium ferrite (MgFeO) encapsulated with liposomes lipid bilayer (MLs), Quercetin (Q)-loaded MgFeO@Liposomes (Q-MLs) nano-hybrid system were successfully synthesized for magnetic hyperthermia (MHT) and SDD applications.

View Article and Find Full Text PDF

To overcome the low bioavailability of lipophilic free thymoquinone (TQ), this study aims to evaluate a novel oral formula of TQ-loaded chitosan nanoparticles (TQ-CsNPs) for the effective treatment of diabetes. The XRD, FTIR, FESEM, HRTEM, and dynamic light scattering were all conducted on the prepared formula. The release pattern of TQ, cytotoxicity against MRC-5 cell line (human lung fibroblast cells), and antidiabetic activity on streptozotocin/nicotinamide (STZ/NA) rat model of diabetes were investigated.

View Article and Find Full Text PDF

Background: Incidence of diabetes has increased significantly worldwide over recent decades. Our objective was to prepare and characterize a novel nano-carrier of hesperidin to achieve a sustained release of hesperidin and to explore the potency of the novel formula as an antidiabetic agent compared to metformin in type 2 diabetic rats.

Methods: Hesperidin was loaded on MgAl-layered double hydroxide (LDH).

View Article and Find Full Text PDF