Publications by authors named "Ziemons Eric"

A transmission detection mode was investigated with SERS analyses (SETRS). A comparison between backscattering and transmission detection modes was conducted to demonstrate the feasibility of performing SETRS analyses. The impact of various parameters on the SERS signal intensity such as sample volume, lens collection optic, laser beam size and laser power were then examined.

View Article and Find Full Text PDF

The current targeted therapy for BRAF-mutant lung cancer consists of a dual blockade of RAF/MEK kinases often combining dabrafenib/trametinib (D/T). This regimen extends survival when compared to single-agent treatments, but disease progression is unavoidable. By using whole-genome CRISPR screening and RNA sequencing, we characterize the vulnerabilities of both persister and D/T-resistant cellular models.

View Article and Find Full Text PDF

A major limitation preventing the use of surface-enhanced Raman scattering (SERS) in routine analyses is the signal variability due to the heterogeneity of metallic nanoparticles used as SERS substrates. This study aimed to robustly optimise a synthesis process of silver nanoparticles to improve the measured SERS signal repeatability and the protocol synthesis repeatability. The process is inspired by a chemical reduction method associated with microwave irradiation to guarantee better controlled and uniform heating.

View Article and Find Full Text PDF

Portable near-infrared (NIR) spectrophotometers have emerged as valuable tools for identifying substandard and falsified pharmaceuticals (SFPs). Integration of these devices with chemometric and machine learning models enhances their ability to provide quantitative chemical insights. However, different NIR spectrophotometer models vary in resolution, sensitivity, and responses to environmental factors such as temperature and humidity, necessitating instrument-specific libraries that hinder the wider adoption of NIR technology.

View Article and Find Full Text PDF

Vitamin D, an essential micronutrient, often requires supplementation via medicines or food supplements, which necessitate quality control (QC). This study presents the development of a method for detecting and quantifying seven impurities of vitamin D in oily drug products using supercritical fluid chromatography-mass spectrometry (SFC-MS). Targeted impurities include two esters of vitamin D and five non-esters including four that are isobaric to vitamin D.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy is actually a well-established technique that demonstrates its performance in the frame of detection of poor-quality medicines. The use of low-cost handheld NIR spectrophotometers in low-resource contexts can allow an inexpensive and more rapid detection compared to laboratory methods. Considering these points, it was decided to develop, validate, and transfer methods for the quantification of ciprofloxacin and metronidazole tablet samples using a NIR handheld spectrophotometer in transmission mode (NIR-M-T1) coupled to chemometrics such as partial least squares regression (PLSR) algorithm.

View Article and Find Full Text PDF

The negative consequences of Substandard and falsified (SF) medicines are widely documented nowadays and there is still an urgent need to find them in more efficient ways. Several screening tools have been developed for this purpose recently. In this study, three screening tools were used on 292 samples of ciprofloxacin and metronidazole collected in Cameroon.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a vibrational widely used technique thanks to its multiple advantages such as its high specificity and sensitivity. The Raman signal exaltation comes from the use of metallic nanoparticles (Nps) acting as antennas by amplifying the Raman scattering. Controlling the Nps synthesis is a major point for the implementation of SERS in routine analysis and especially in quantitative applications.

View Article and Find Full Text PDF

Hyperspectral imaging technology is developing in a very fast way. We find it today in many analytical developments using different spectroscopies for sample classification purposes. Instrumental developments allow us to acquire more and more data in shorter and shorter periods of time while improving their quality.

View Article and Find Full Text PDF

Quality is one of the essential components of medicines and needs to be ensured to preserve the population's health. This can be achieved through post-marketing quality control of medicines and is one of the most important duties of national regulatory authorities. In collaboration with the Cameroonian National Drug Quality Control and Valuation Laboratory, the decision was made to initiate a prevalence study to assess the quality of antiinfective medicines in Cameroon.

View Article and Find Full Text PDF

Quality control is a fundamental and critical activity in the pharmaceutical industry that guarantees the quality of medicines. QC analyses are currently performed using several well-known techniques, mainly liquid and gas chromatography. However, current trends are focused on the development of new techniques to reduce analysis time and cost, to improve the performances and decrease ecological footprint.

View Article and Find Full Text PDF

The ultimate goal of a one-class classifier like the "rigorous" soft independent modeling of class analogy (SIMCA) is to predict with a certain confidence probability, the conformity of future objects with a given reference class. However, the SIMCA model, as currently implemented often suffers from an undercoverage problem, meaning that its observed sensitivity often falls far below the desired theoretical confidence probability, hence undermining its intended use as a predictive tool. To overcome the issue, the most reported strategy in the literature, involves incrementing the nominal confidence probability until the desired sensitivity is obtained in cross-validation.

View Article and Find Full Text PDF

Many active principles belong to the second class of the Biopharmaceutics Classification System due to their low aqueous solubility. Elaboration of new solid oral forms by hot-melt extrusion and fused deposition modeling appears as a promising tool to increase the dissolution rate of these drugs. Indeed, hot-melt extrusion allows the amorphisation of drugs and forms with complex geometries are built by 3D printing.

View Article and Find Full Text PDF

Vibrational spectroscopic techniques, i.e., attenuated total reflectance infrared (ATR-IR), near infrared spectroscopy (NIRS) and Raman spectroscopy (RS), coupled with Partial Least Squares Regression (PLSR), were evaluated as cost-effective label-free and reagent-free tools to monitor water content in Levulinic Acid/L-Proline (LALP) (2:1, mol/mol) Natural Deep Eutectic Solvent (NADES).

View Article and Find Full Text PDF

Glycosylation is considered a critical quality attribute of therapeutic proteins as it affects their stability, bioactivity, and safety. Hence, the development of analytical methods able to characterize the composition and structure of glycoproteins is crucial. Existing methods are time consuming, expensive, and require significant sample preparation, which can alter the robustness of the analyses.

View Article and Find Full Text PDF

Glyphosate, also known as N-(phosphonomethyl)glycine, is one of the most widely used herbicides in the world. However, the controversy surrounding the toxicity of glyphosate and its main breakdown product, aminomethylphosphonic acid (AMPA), remains a serious public concern. Therefore, there is a clear need to develop a rapid, sensitive and automated alternative method for the quantification of glyphosate and AMPA.

View Article and Find Full Text PDF

Cannabis has been at the center of scientific attention for some years now. Since its pharmacological potential has been highlighted, cannabis has become a hot topic in research laboratories, leading to the publication of many scientific studies. Focusing on analytical chemistry, an enormous number of analytical methods for cannabinoid (CNB) determination have been published, involving various techniques.

View Article and Find Full Text PDF

Previously, we introduced a novel one-class classification (OCC) concept for spectra. It uses as acceptance space for genuine spectra of the target chemical, a prediction band in the wavelengths' space. As a decision rule, test spectra falling substantially outside this band are rejected as noncomplying with the target, and their deviations are documented in the wavelengths' space.

View Article and Find Full Text PDF

Multivariate curve resolution unmixing of hyperspectral imaging data can be challenging when low sources of variance are present in complex samples, as for minor (low-concentrated) chemical compounds in pharmaceutical formulations. In this work, it was shown how the reduction of hyperspectral imaging data matrices through the selection of essential spectra can be crucial for the analysis of complex unknown pharmaceutical formulation applying Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). Results were obtained on simulated datasets and on real FT-IR and Raman hyperspectral images of both genuine and falsified tablets.

View Article and Find Full Text PDF

Almost 60% of commercialized pharmaceutical proteins are glycosylated. Glycosylation is considered a critical quality attribute, as it affects the stability, bioactivity and safety of proteins. Hence, the development of analytical methods to characterise the composition and structure of glycoproteins is crucial.

View Article and Find Full Text PDF

Vitamin D is a key micronutrient whose intakes are inadequate for most populations worldwide. Supplementation with medicines or food supplements is commonly prescribed to correct this imbalance and the quality of these products must be ensured. In this context, a generic methodology for the assay of vitamin D in oily formulations is proposed using supercritical fluid chromatography coupled to mass spectrometry (SFC-MS).

View Article and Find Full Text PDF

Fluorescence, especially laser induced fluorescence (LIF), is a powerful detection technique thanks to its specificity and high sensitivity. The use of fluorescence detection hyphenated to separation technique often requires the labeling of analytes with suitable fluorescent dye, such as FITC for the labeling of molecules presenting amino groups. Nevertheless, the labeling of analytes could be a tedious, time consuming and a non-robust step of the analytical workflow.

View Article and Find Full Text PDF

The optimization of pharmaceutical bioprocesses suffers from several challenges like complexity, upscaling costs, regulatory approval, leading to the risk of delivering substandard drugs to patients. Bioprocess is very complex and requires the evaluation of multiple components that need to be monitored and controlled in order to attain the desired state when the process ends. Statistical design of experiments (DoE) is a powerful tool for optimizing bioprocesses because it plays a critical role in the quality by design strategy as it is useful in exploring the experimental domain and providing statistics of interest that enable scientists to understand the impact of critical process parameters on the critical quality attributes.

View Article and Find Full Text PDF

The aim of the present study was to explore the feasibility of applying near-infrared (NIR) spectroscopy for the quantitative analysis of Δ-tetrahydrocannabinol (THC) in cannabis products using handheld devices. A preliminary study was conducted on different physical forms (entire, ground and sieved) of cannabis inflorescences in order to evaluate the impact of sample homogeneity on THC content predictions. Since entire cannabis inflorescences represent the most common types of samples found in both the pharmaceutical and illicit markets, they have been considered priority analytical targets.

View Article and Find Full Text PDF

Hyperspectral imaging has been widely used for different kinds of applications and many chemometric tools have been developed to help identifying chemical compounds. However, most of those tools rely on factorial decomposition techniques that can be challenging for large data sets and/or in the presence of minor compounds. The present study proposes a pixel-based identification (PBI) approach that allows readily identifying spectral signatures in Raman hyperspectral imaging data.

View Article and Find Full Text PDF