Publications by authors named "Ziembowicz A"

Birth asphyxia causes brain injury in neonates, but a fully successful treatment has yet to be developed. This study aimed to investigate the effect of group II mGlu receptors activation after experimental birth asphyxia (hypoxia-ischemia) on the expression of factors involved in apoptosis and neuroprotective neurotrophins. Hypoxia-ischemia (HI) on 7-day-old rats was used as an experimental model.

View Article and Find Full Text PDF

The over-activation of NMDA receptors and oxidative stress are important components of neonatal hypoxia-ischemia (HI). Kynurenic acid (KYNA) acts as an NMDA receptor antagonist and is known as a reactive oxygen species (ROS) scavenger, which makes it a potential therapeutic compound. This study aimed to establish the neuroprotective and antioxidant potential of KYNA in an experimental model of HI.

View Article and Find Full Text PDF

Hypoxia-ischemia (HI) in an immature brain results in energy depletion and excessive glutamate release resulting in excitotoxicity and oxidative stress. An increase in reactive oxygen species (ROS) production induces apoptotic processes resulting in neuronal death. Activation of group II mGluR was shown to prevent neuronal damage after HI.

View Article and Find Full Text PDF

-acetylaspartylglutamate (NAAG), the most abundant peptide transmitter in the mammalian nervous system, activates mGluR3 at presynaptic sites, inhibiting the release of glutamate, and acts on mGluR3 on astrocytes, stimulating the release of neuroprotective growth factors (TGF-β). NAAG can also affect -methyl-d-aspartate (NMDA) receptors in both synaptic and extrasynaptic regions. NAAG reduces neurodegeneration in a neonatal rat model of hypoxia-ischemia (HI), although the exact mechanism is not fully recognized.

View Article and Find Full Text PDF

Birth asphyxia resulting in brain hypoxia-ischemia (H-I) can cause neonatal death or lead to persistent brain damage. Recent investigations have shown that group II metabotropic glutamate receptor (mGluR2/3) activation can provide neuroprotection against H-I but the mechanism of this effect is not clear. The aim of this study was to investigate whether mGluR2/3 agonists applied a short time after H-I reduce brain damage in an experimental model of birth asphyxia, and whether a decrease in oxidative stress plays a role in neuroprotection.

View Article and Find Full Text PDF

Hypoxia-ischemia (H-I) at the time of birth may cause neonatal death or lead to persistent brain damage. The search for an effective treatment of asphyxiated infants has not resulted in an effective therapy, and hypothermia remains the only available therapeutic strategy. Among possible experimental therapies, the induction of ischemic tolerance is promising.

View Article and Find Full Text PDF

Background: Perinatal hypoxia-ischemia causes brain injury in neonates, but a fully successful treatment to prevent changes in the brain has yet to be developed. The aim of this study was to evaluate the effect of combining memantine treatment with HBO (2.5 ATA) or HH (0.

View Article and Find Full Text PDF

Ischemic preconditioning with sublethal stress triggers defensive mechanisms against ischemic brain damage; however, such manipulations are potentially dangerous and, therefore, safe stimuli have been sought. Hyperoxia preconditioning by administration of hyperbaric (HBO) or normobaric oxygen (NBO) may have neuroprotective potential. The aim of this study was to determine whether preconditioning with HBO and air (HBA) applied at 2.

View Article and Find Full Text PDF

Previous studies have demonstrated that repeated submission of rats to mild hypobaric hypoxia reduces the persistent behavioral and hormonal depressive symptoms induced by exposure to footshock in the learned helplessness paradigm. The aim of this study was to determine whether hypoxic preconditioning of mice can also induce antidepressant- and anxiolytic-like effects that are detectable with the other commonly used behavioral tests, and to determine whether these effects are accompanied by an increase in neuropeptide Y (NPY) in the hippocampus, which may suggest the involvement of NPY in these mechanisms. The intermittent mild hypobaric hypoxia was generated by 2-h exposure of mice to 0.

View Article and Find Full Text PDF

Perinatal brain insult mostly resulting from hypoxia-ischemia (H-I) often brings lifelong permanent disability, which has a major impact on the life of individuals and their families. The lack of progress in clinically-applicable neuroprotective strategies for birth asphyxia has led to an increasing interest in alternative methods of therapy, including induction of brain tolerance by pre- and particularly postconditioning. Hypoxic postconditioning represents a promising strategy for preventing ischemic brain damage.

View Article and Find Full Text PDF

Anoxic brain injury resulting from cardiac arrest is responsible for approximately two-thirds of deaths. Recent evidence suggests that increased oxygen delivered to the brain after cardiac arrest may be an important factor in preventing neuronal damage, resulting in an interest in hyperbaric oxygen (HBO) therapy. Interestingly, increased oxygen supply may be also reached by application of normobaric oxygen (NBO) or hyperbaric air (HBA).

View Article and Find Full Text PDF

Preconditioning with sublethal ischemia or hypoxia may reduce the high susceptibility of CA1 pyramidal neurons to ischemic injury. In this study, we tested the hypothesis that enhanced level of neuropeptide Y (NPY) might play a role in the mechanisms responsible for this induced tolerance. Changes in NPY immunoreactivity in the hippocampal formation of preconditioned Mongolian gerbils were compared with the level of tolerance to test ischemia.

View Article and Find Full Text PDF

In Mongolian gerbils, global forebrain ischemia induces enhanced locomotor activity and the disruption of nest building immediately after the insult, followed by damage to hippocampal neurons developing 3 days later. Preconditioning by a brief episode of sublethal ischemia induces the protection of CA1 hippocampal neurons against a lethal ischemic insult. We examined how preconditioning with 2-min ischemia affects disturbances in the nest building behavior and locomotor activity induced by the injurious 3-min ischemia.

View Article and Find Full Text PDF

In this study we tested the effect of antagonists of two subtypes of the group I metabotropic glutamate receptors (mGluRs GI) on the induction of ischemic tolerance in relation to brain temperature. These experiments were prompted by indications that glutamate receptors may participate in the mechanisms of ischemic preconditioning. The role of NMDA receptors in the induction of ischemic tolerance has been debated while there is lack of information concerning the involvement of mGluRs GI in this phenomenon.

View Article and Find Full Text PDF

The neuroprotective efficacy of 2-aminobicyclo[2.1.1]hexane-2,5-dicarboxylic acid-I (ABHxD-I), a rigid agonist of metabotropic glutamate receptors, was studied using a 3-min global cerebral ischaemia model in Mongolian gerbils and the hypoxia/ischaemia model in 7-day-old rats.

View Article and Find Full Text PDF

Effects of high and moderate affinity uncompetitive NMDA receptor antagonists (+)MK-801 and memantine on ischemic tolerance were compared in relation to telemetrically controlled brain temperature. The tolerance to an injurious 3 min test of global forebrain ischemia in Mongolian gerbils was induced 48 h earlier by 2 min preconditioning ischemia. Normothermic preconditioning was virtually harmless, and greatly reduced neurodegeneration evoked by test ischemia.

View Article and Find Full Text PDF

Increased serum level of homocysteine, a sulfur-containing amino acid, is considered a risk factor in vascular disorders and in dementias. The effect of homocysteine and metabolically related compounds on brain production of kynurenic acid (KYNA), an endogenous antagonist of glutamate ionotropic receptors, was studied. In rat cortical slices, DL-homocysteine enhanced (0.

View Article and Find Full Text PDF

This in vivo microdialysis study compared the effects of NMDA and D,L-homocysteine (Hcy) administered via dialysis medium on 45Ca efflux from prelabeled rabbit hippocampus. Application of these agonists evoked dose-dependent, and sensitive to MK-801, opposite effects: NMDA decreased the 45Ca radioactivity in the dialysate, whereas Hcy induced the release of 45Ca. The latter effect was potentiated by glycine, inhibited by the antagonist of group I metabotropic glutamate receptors (mGluR) LY367385, and mimicked by t-ADA, an agonist of these receptors.

View Article and Find Full Text PDF

The mitochondrial permeability transition (MPT) resulting from calcium-induced opening of cyclosporin A (CsA)-sensitive megachannels, leading to deenergisation of mitochondria and release of pro-apoptotic cytochrome c, has been implicated in the pathomechanism of excitotoxic neurodegeneration. The aim of this work was to test neuroprotective potential of CsA in the model of N-methyl-D-aspartate-(NMDA)-induced excitotoxicity in vivo, and to verify utility of microdialysis of the rabbit hippocampus in vivo for these mechanistic studies. In vitro experiments demonstrated that the early rapid phase of Ca(2+)-induced swelling of isolated brain mitochondria, and of accompanying cytochrome c release, was strongly inhibited by 0.

View Article and Find Full Text PDF

The aim of this in vivo microdialysis study was to characterise the regulation of prostaglandin D2 (PgD2) synthesis by NMDA receptors in the rabbit hippocampus in relation to changes in extracellular Ca2+ concentration ([Ca2+]e) and nitric oxide (NO) levels. Samples of dialysate were analysed for changes in PgD2 concentration, in [Ca2+]e and in the level of NO. The results demonstrated that a 20-min pulse application of 0.

View Article and Find Full Text PDF

In vivo microdialysis combined with the measurement of (45)Ca(2+) efflux from prelabelled hippocampus demonstrated a pronounced N-methyl-D-aspartate (NMDA)-evoked (45)Ca(2+) release to the dialysate in the rat dentate gyrus (DG) and CA1, whereas in rabbit a slight release of (45)Ca(2+) was observed only in the DG. In vitro, we noticed that the NMDA-evoked increase in Fura-2 detected intracellular Ca(2+) concentration in synaptoneurosomes from the rat, but not from the rabbit hippocampus, was strongly inhibited by the ryanodine receptor (RyR) antagonists dantrolene and ryanodine. To establish the mechanism of these differences, we characterised their possible dependence on the expression of RyR and their co-localisation with the calcium binding protein calbindin D(28k).

View Article and Find Full Text PDF

This in vivo study, aimed at detecting the N-methyl-D-aspartate (NMDA) evoked Ca(2+)-induced Ca(2+) release from intracellular stores in the neonatal rat brain, demonstrates that the application of 5 mM N-methyl-D-aspartate via a microdialysis probe for 20 min to the dentate gyrus (DG) of halotane-anesthetized 7 day-old (postnatal day 7, PND 7) rats induces a prolonged decrease in Ca(2+) concentration in an initially calcium-free dialysis medium, indicative of a drop in the extracellular concentration of Ca(2+) and Ca(2+) influx to neurons. In parallel experiments, a huge NMDA-evoked release of 45Ca from the pre-labeled endogenous Ca(2+) pool was observed and interpreted as the expression of intracellular Ca(2+) release. Dantrolene (100 microM) significantly inhibited the NMDA-induced 45Ca release, whereas 250 microM ryanodine exerted an unspecific biphasic effect.

View Article and Find Full Text PDF

In vivo microdialysis combined with measurements of 45Ca efflux from pre-labelled rat hippocampus has been utilised in our laboratory to demonstrate NMDA-evoked 45Ca2+ release to dialysate, reflecting calcium-induced calcium release (CICR) via ryanodine receptors (RyR). In the present study we attempted to reproduce this phenomenon in the rabbit hippocampus. Application of 1 mM NMDA to dialysis medium induced a decrease in Ca2+ concentration in dialysate, as a result of extracellular Ca2+ influx to neurones.

View Article and Find Full Text PDF

Previously, by using in vivo microdialysis, we demonstrated a huge release of 45Ca2+ from prelabeled tissues to dialysate that was evoked by application of N-methyl-D-aspartate (NMDA) to the rat dentate gyrus (DG) and sector 4 of the cornu ammonis. To establish the mechanism of this phenomenon, in the present study, we characterized its NMDA receptor dependence, investigated the mechanism of 45Ca2+ removal from the cells, and evaluated the possible involvement of calcium-binding protein calbindin D28k and of ryanodine receptors. Microdialysis experiments demonstrated a dose-response relation between NMDA and 45Ca2+ release and sensitivity of this phenomenon to inhibition by 10 microM MK-801 and 5 mM 5-(N,N-dimethyl)-amiloride, thus indicating the NMDA receptor dependence and a role of Na+/Ca2+ exchanger in mediating 45Ca2+ release from cells.

View Article and Find Full Text PDF