Background: Disorders of consciousness (DoC) in non-traumatic ICU-patients are often treated with amantadine, although evidence supporting its efficacy is limited.
Methods: This retrospective study analyzed non-traumatic DoC-patients treated with amantadine between January 2016 and June 2021. Data on patient demographics, clinical characteristics, treatment specifications, and outcomes were extracted from electronic medical records.
Background: A strong association between multiple sclerosis (MS) and Epstein-Barr virus (EBV) has been established but the exact role of EBV in MS remains controversial. Recently, molecular mimicry between EBNA1 and specific GlialCAM, CRYAB and ANO2 peptides has been suggested as a possible pathophysiological mechanism. The aim of this study was to analyse anti-EBV antibodies in MS patients against (I) EBV lifecycle proteins, (II) putative cross-reactive peptides, and (III) during treatment.
View Article and Find Full Text PDFOn July 6th of 1924 Hans Berger -a German psychiatrist- first recorded electric signals from the human brainvia scalp electrodes. This date marks the beginning of Electroencephalography. In this review a representative panel of past and present Officers of the International Federation of Clinical Neurophysiology (IFCN) and of its Official Journal briefly summarizes the past, present and future of Electroencephalographic and related neurophysiological techniques' impact and the role of the IFCN in global collaboration, education, standardization, research innovation, and clinical practice.
View Article and Find Full Text PDFFront Syst Neurosci
December 2024
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse.
View Article and Find Full Text PDFThe brain is a highly complex physical system made of assemblies of neurons that work together to accomplish elaborate tasks such as motor control, memory and perception. How these parts work together has been studied for decades by neuroscientists using neuroimaging, psychological manipulations, and neurostimulation. Neurostimulation has gained particular interest, given the possibility to perturb the brain and elicit a specific response.
View Article and Find Full Text PDFObjective: Electric-field orientation is crucial for optimizing neuronal excitation in transcranial magnetic stimulation (TMS). Yet, the stimulus orientation effects on short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) are poorly understood due to technical challenges in manipulating the TMS-induced stimulus orientation within milliseconds. We aimed to assess the orientation sensitivity of SICI and ICF paradigms and identify optimal orientations for motor evoked potential (MEP) facilitation and suppression.
View Article and Find Full Text PDFBackground: Management of intracerebral hemorrhage (ICH) is challenged by limited therapeutic options and a complex relationship between blood pressure (BP) dynamics, especially BP variability (BPV) and ICH outcome.
Methods: In an exploratory analysis of prospectively collected data on consecutive patients with nontraumatic ICH between 2015 and 2020, continuous BP accessed via an arterial line extracted from the Intellispace Critical Care and Anesthesia information system (Philips Healthcare) was analyzed over the first 72 h post admission. Arterial lines were used as part of standard clinical practice in the intensive care, ensuring high fidelity and real-time data essential for acute care settings.
Prog Neuropsychopharmacol Biol Psychiatry
October 2024
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a valuable tool for investigating brain functions in health and disease. However, the detailed neural mechanisms underlying TMS-EEG responses, including TMS-evoked EEG potentials (TEPs) and TMS-induced EEG oscillations (TIOs), remain largely unknown. Combining TMS-EEG with pharmacological interventions provides a unique opportunity to elucidate the roles of specific receptor-mediated neurotransmissions in these responses.
View Article and Find Full Text PDFCombining Non-Invasive Brain Stimulation (NIBS) techniques with the recording of brain electrophysiological activity is an increasingly widespread approach in neuroscience. Particularly successful has been the simultaneous combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Unfortunately, the strong magnetic pulse required to effectively interact with brain activity inevitably induces artifacts in the concurrent EEG acquisition.
View Article and Find Full Text PDFBackground: In healthy subjects, repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1) demonstrated plasticity effects contingent on electroencephalography (EEG)-derived excitability states, defined by the phase of the ongoing sensorimotor μ-oscillation. The therapeutic potential of brain state-dependent rTMS in the rehabilitation of upper limb motor impairment post-stroke remains unexplored.
Objective: Proof-of-concept trial to assess the efficacy of rTMS, synchronized to the sensorimotor μ-oscillation, in improving motor impairment and reducing upper-limb spasticity in stroke patients.
Background: The relationship between heart rate variability (HRV) changes potentially indicating autonomic dysregulation following spontaneous intracerebral hemorrhage (ICH) and functional outcome has not yet been fully elucidated. This study investigated the effects of HRV during the initial 96 h after admission on 90-day functional outcome in ICH patients.
Methods: We included patients with spontaneous ICH in a prospective cohort single-center study.
The corticospinal responses of the motor network to transcranial magnetic stimulation (TMS) are highly variable. While often regarded as noise, this variability provides a way of probing dynamic brain states related to excitability. We aimed to uncover spontaneously occurring cortical states that alter corticospinal excitability.
View Article and Find Full Text PDFThe communication between dorsal premotor cortex (PMd) and primary motor cortex (M1) is important for visuomotor adaptation, but it is unclear how this relationship changes with advancing age. The present study recruited 21 young and 23 older participants for two experimental sessions during which intermittent theta burst stimulation (iTBS) or sham was applied over PMd. We assessed the effects of PMd iTBS on M1 excitability using motor evoked potentials (MEP) recorded from right first dorsal interosseous when single-pulse transcranial magnetic stimulation (TMS) was applied with posterior-anterior (PA) or anterior-posterior (AP) currents; and adaptation by quantifying error recorded during a visuomotor adaptation task (VAT).
View Article and Find Full Text PDFState-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability. While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic stimulation (TMS) of M1.
View Article and Find Full Text PDFPrevious transcranial magnetic stimulation (TMS) research suggests that the dorsal premotor cortex (PMd) influences neuroplasticity within the primary motor cortex (M1) through indirect (I) wave interneuronal circuits. However, it is unclear how the influence of PMd on the plasticity of M1 I-waves changes with advancing age. This study therefore investigated the neuroplastic effects of intermittent theta burst stimulation (iTBS) to M1 early and late I-wave circuits when preceded by iTBS (PMd iTBS-M1 iTBS) or sham stimulation (PMd sham-M1 iTBS) to PMd in 15 young and 16 older adults.
View Article and Find Full Text PDFThe primary constraint of non-invasive brain-machine interfaces (BMIs) in stroke rehabilitation lies in the poor spatial resolution of motor intention related neural activity capture. To address this limitation, hybrid brain-muscle-machine interfaces (hBMIs) have been suggested as superior alternatives. These hybrid interfaces incorporate supplementary input data from muscle signals to enhance the accuracy, smoothness and dexterity of rehabilitation device control.
View Article and Find Full Text PDFBackground: The complexity of the neurophysiological mechanisms underlying human consciousness is widely acknowledged, with information processing and flow originating in cortex conceived as a core mechanism of consciousness emergence. Combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is considered as a promising technique to understand the effective information flow associated with consciousness.
Objectives: To investigate information flow with TMS-EEG and its relationship to different consciousness states.
Electroencephalogram (EEG) recorded as response to transcranial magnetic stimulation (TMS) can be highly informative of cortical reactivity and connectivity. Reliable EEG interpretation requires artifact removal as the TMS-evoked EEG can contain high-amplitude artifacts. Several methods have been proposed to uncover clean neuronal EEG responses.
View Article and Find Full Text PDFIntroduction: In Multiple Sclerosis (MS), patients´ characteristics and (bio)markers that reliably predict the individual disease prognosis at disease onset are lacking. Cohort studies allow a close follow-up of MS histories and a thorough phenotyping of patients. Therefore, a multicenter cohort study was initiated to implement a wide spectrum of data and (bio)markers in newly diagnosed patients.
View Article and Find Full Text PDFBackground: Transcranial magnetic stimulation (TMS) is a noninvasive neurostimulation modality that has been used to study human synaptic plasticity. Leveraging work in ex vivo preparations, mechanistically informed pharmacological adjuncts to TMS have been used to improve our fundamental understanding of TMS-induced synaptic plasticity.
Methods: We systematically reviewed the literature pairing pharmacological adjuncts with TMS plasticity-induction protocols in humans.
BACKGROUND: Rivaroxaban and dabigatran were not superior to aspirin in trials of patients with embolic stroke of undetermined source (ESUS). It is unknown whether apixaban is superior to aspirin in patients with ESUS and known risk factors for cardioembolism. METHODS: We conducted a multicenter, randomized, open-label, blinded-outcome trial of apixaban (5 mg twice daily) compared with aspirin (100 mg once daily) initiated within 28 days after ESUS in patients with at least one predictive factor for atrial fibrillation or a patent foramen ovale.
View Article and Find Full Text PDFNon-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation.
View Article and Find Full Text PDF