Peptide bond formation is a crucial chemical process that dominates most biological mechanisms and is claimed to be a governing factor in the origin of life. Dipeptides made from glycine are studied computationally via Density Functional Theory (DFT) using two different basis sets. This reaction was investigated from both a thermodynamic and kinetic point of view.
View Article and Find Full Text PDFA DFT study was conducted to elucidate the mechanism of hexene hydrogenation catalysed by a series of ruthenium (II) monohydride catalysts: RuH(CO)(Cl)(LL') where L and L' represent C(cyclohexyl), Me (methyl) and IMe (N, N '-bis (mesityl) imidazole-2-ylidene). This investigation explores the feasibility of two different proposed mechanisms: the first describes the dissociated pathway and exploits a single phosphine complex. The second is the associative one and uses a two phosphines complex.
View Article and Find Full Text PDFThere are a limited number of ring-contraction methodologies which convert readily available five-membered rings into strained four-membered rings. Here we report a photo-induced radical-mediated ring contraction of five-membered-ring alkenyl boronate complexes into cyclobutanes. The process involves the addition of an electrophilic radical to the electron-rich alkenyl boronate complex, leading to an α-boryl radical.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2017
The discovery of new gigantic molecules formed by self-assembly and crystal growth is challenging as it combines two contingent events; first is the formation of a new molecule, and second its crystallization. Herein, we construct a workflow that can be followed manually or by a robot to probe the envelope of both events and employ it for a new polyoxometalate cluster, Na [Mo Ce O H (H O) ]⋅200 H O (1) which has a trigonal-ring type architecture (yield 4.3 % based on Mo).
View Article and Find Full Text PDFMany high-yielding reactions for forming peptide bonds have been developed but these are complex, requiring activated amino-acid precursors and heterogeneous supports. Herein we demonstrate the programmable one-pot dehydration-hydration condensation of amino acids forming oligopeptide chains in around 50% yield. A digital recursive reactor system was developed to investigate this process, performing these reactions with control over parameters such as temperature, number of cycles, cycle duration, initial monomer concentration and initial pH.
View Article and Find Full Text PDF