Angew Chem Int Ed Engl
January 2025
Smart materials enabling emission intensity or wavelength tuning by light stimulus have attracted attention in cutting-edge fields. However, due to the general limitation of the dense molecular stacking (in solid states, especially in crystals) on photoresponsivity, constructing rapidly phototunable solid-state luminescent systems remains challenging. Herein, we present a new luminophore that serves as both a photoresponsive and a luminous group with enhanced conformational freedom to attain this goal, namely, relying on photoexcitation-induced molecular conformational change of an ionized persulfurated arene based on weak intermolecular aliphatic C-H⋅⋅⋅π interaction.
View Article and Find Full Text PDFEnviron Plan B Urban Anal City Sci
June 2023
Since the first confirmed case was reported in January 2020, Hong Kong has experienced multiple waves of COVID-19 outbreaks. Recent literature has explored the spatial patterns of disease incidence and their relationships with the built environment and demographic characteristics. Nonetheless, few studies aim at the comparative patterns of different epidemic waves occurring in the same spatial context.
View Article and Find Full Text PDFMechanistic probing of surface potential changes arising from dynamic charge transport is the key to understanding and engineering increasingly complex nanoscale materials and devices. Spatiotemporal averaging in conventional heterodyne detection-based Kelvin probe force microscopy (KPFM) inherently limits its time resolution, causing an irretrievable loss of transient response and higher-order harmonics. Addressing this, we report a wavelet transform (WT)-based methodology capable of quantifying the sub-ms charge dynamics and probing the elusive transient response.
View Article and Find Full Text PDFNotably, the intermolecular charge transfer between pyrene (Py) and benzophonenes (BPs) can significantly enhance the quantum yield of the triplet state of Py, which will convert Py from a fluorescence molecule to a phosphorescence molecule. The intermolecular charge transfer is confirmed by steady-state and time-resolved spectroscopy and theoretical study. Based on these foundations, Py is doped into BPs systems and a large Stokes-shift organic room temperature phosphorescence (ORTP) is observed.
View Article and Find Full Text PDFLocalized surface plasmon resonance (LSPR) of metallic nanostructures is a unique phenomenon that controls the light in sub-wavelength volumes and enhances the light-matter interactions. Traditionally, the excitation and measurement of LSPR require bulky external light sources, and efforts to scale down to nano-plasmonic devices have predominantly relied on the system's miniaturization and associated accessories. Addressing this, here we show the generation and detection of LSPR wavelength (λ) shifts in large-area nanostructured Au surfaces using frictional charges generated by triboelectric surfaces.
View Article and Find Full Text PDFWe present here the synthesis and in-depth physicochemical characterization of a double hetero[7]helicene fused with four triazole rings at both helical ends. The comparison of this triazole-fused double helicene with the previously reported all-carbon and thiadiazole-fused analogs revealed the huge impact of the embedded aromatic rings on the photophysical features. The small structural variation of the terminal rings from thiadiazole to triazole caused a dramatic change of the photoluminescence quantum yields (PLQYs) from <1 % to 96 %, while the replacement of the terminal benzene rings with triazole rings induced a tenfold enhancement of the circularly polarized luminescence dissymmetry factor.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2021
With the COVID-19 vaccination widely implemented in most countries, propelled by the need to revive the tourism economy, there is a growing prospect for relieving the social distancing regulation and reopening borders in tourism-oriented countries and regions. This need incentivizes stakeholders to develop border control strategies that fully evaluate health risks if mandatory quarantines are lifted. In this study, we have employed a computational approach to investigate the contact tracing integrated policy in different border-reopening scenarios in Hong Kong, China.
View Article and Find Full Text PDFDrug Dev Res
February 2016
Preclinical Research Epidermal growth factor receptor (EGFR), a validated target for anticancer drugs, plays a critical role in tumorigenesis and tumor development. A series of p-O-alkyl salicylanilide derivatives were designed and synthesized as novel EGFR inhibitors using a salicylic acid scaffold. A simulated six-membered ring strategy formed through intramolecular hydrogen bonds was employed to mimic the planar quinazoline of the EGFR antagonist, gefitinib.
View Article and Find Full Text PDFBackground: Imaging and image analysis advances are yielding increasingly complete and complicated records of cellular events in tissues and whole embryos. The ability to follow hundreds to thousands of cells at the individual level demands a spatio-temporal data infrastructure: tools to assemble and collate knowledge about development spatially in a manner analogous to geographic information systems (GIS). Just as GIS indexes items or events based on their spatio-temporal or 4D location on the Earth these tools would organize knowledge based on location within the tissues or embryos.
View Article and Find Full Text PDFRegulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. Caenorhabditis elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm.
View Article and Find Full Text PDFZhejiang Da Xue Xue Bao Yi Xue Ban
July 2010
Objective: To investigate the effect of pH value and fluoride ions on the corrosion resistance of pure Ti and Ni-Cr-Ti alloy in the artificial saliva.
Methods: Electrochemical technique was used to measure the electric potential of corrosion (Ecorr), current density of corrosion (Icorr) and polarization resistance (Rp) of pure titanium and Ti-Ni-Cr alloy in the artificial saliva with different pH value and fluoride concentrations. After electrochemical analysis, microstructure and phase diffraction were examined by FSEM.