Graphene-like 2D coordination polymers (GCPs) have been of central research interest in recent decades with significant impact in many fields. According to classical coordination chemistry, Cu(II) can adopt the dsp hybridization to form square planar coordination geometry, but not Cu(I); this is why so far, there has been few 2D layered structures synthesized from Cu(I) precursors. Herein a pair of isostructural GCPs synthesized by the coordination of benzenehexathiol (BHT) ligands with Cu(I) and Cu(II) ions, respectively, is reported.
View Article and Find Full Text PDFMetal-organic complexes with radical characteristics are unique species attracting immense attention in recent years due to their peculiar properties and promising applicability in a wide variety of innovative research fields. However, the reported complexes typically do not exceed diradicality. This study systematically investigates a series of square planar neutral Ni-bis(1,2-dithiolene) and Ni-bis(1,2-dioxolene) complexes with linear, branched, and macrocyclic configurations via ab initio calculations.
View Article and Find Full Text PDFIt is a long-standing goal to fabricate conductive molecular nanowires (NWs) on semiconductor surfaces. Anchoring molecules to pre-patterned surface nanostructures is a practical approach to construct molecular NWs on semiconductor surfaces. Previously, well-ordered inorganic Ge NWs were deduced to spontaneously grow onto Pt/Ge(001) surfaces after annealing at an elevated temperature.
View Article and Find Full Text PDFConjugated polymers are promising materials for thermoelectrics as they offer good performances at near ambient temperatures. The current focus on polymer thermoelectric research mainly targets a higher power factor (PF; a product of the conductivity and square of the Seebeck coefficient) through improving the charge mobility. This is usually accomplished structural modification in conjugated polymers using different processing techniques and doping.
View Article and Find Full Text PDFThe manipulation of conductive nanowires (NWs) on semiconductor platforms provides important insights into the fabrication of nanoscale electronic devices. In this work, we directly observed the electric field-induced phase transitions in atomic Au-NWs self-assembled on Ge(001) surfaces using scanning tunneling microscopy (STM). The tunneling electrons and electric fields underneath a STM tip apex can effectively trigger a phase transition in Au-NWs on Ge(001) surfaces.
View Article and Find Full Text PDFThe connection between electronic structures of metal-organic frameworks (MOFs) and their building subunits is a key cornerstone for rational MOF material design. Some two-dimensional conjugated MOFs were reported to be topological insulators. However, many of them are not intrinsic as the Fermi levels are far from the topological gaps.
View Article and Find Full Text PDFAt elevated temperatures, bimetallic nanomaterials change their morphologies because of the interdiffusion of atomic species, which also alters their properties. The Kirkendall effect (KE) is a well-known phenomenon associated with such interdiffusion. Here, we show how KE can manifest in bimetallic nanoparticles (NPs) by following core-shell NPs of Au and Pd during heat treatment with in situ transmission electron microscopy.
View Article and Find Full Text PDF2D materials such as MXenes have garnered attention in a wide field of applications ranging from energy to environment to medical. Properties of 2D materials can be tailored via alloying and in some cases, solid-solutions (disordered alloys) are formed. To predict the disordered alloy properties via first-principles, the model structure needs to imitate the random arrangements of alloyants and yet remains computationally tractable.
View Article and Find Full Text PDFCombining both density functional theory and the cluster expansion method, we investigate 3 binary MXene alloy systems of semiconducting TiCO, ZrCO, and HfCO, where the transition metals substitute one another (i.e., TiZrCO, TiHfCO, and ZrHfCO).
View Article and Find Full Text PDFDoping of traditional semiconductors has enabled technological applications in modern electronics by tailoring their chemical, optical and electronic properties. However, substitutional doping in two-dimensional semiconductors is at a comparatively early stage, and the resultant effects are less explored. In this work, we report unusual effects of degenerate doping with Nb on structural, electronic and optical characteristics of MoS crystals.
View Article and Find Full Text PDFIn response to binding to amine and ammonium guests of varying types, a pyridine-based folding oligomer displays fingerprint regions in its (1)H NMR spectra that allow for the easy identification and classification of the bound guests.
View Article and Find Full Text PDF