Liquid sodium-potassium (Na-K) alloy has the characteristics of high abundance, low redox potential, high capacity, and no dendrites, which has become an ideal alternative material for potassium/sodium metal anodes. However, the high surface tension of liquid sodium potassium alloy at room temperature makes it inconvenient in practical use. Here, the Na-K as reducing agent treats with hydrazone linkages of covalent organic frameworks (COFs) and obtain the carbon-oxygen radical COFs (COR-Tf-DHzDM-COFs).
View Article and Find Full Text PDFPotassium-ion batteries (KIB) have similar energy storage mechanism with lithium-ion battery, but the potassium (K) resource is rich, which shows great potential for large-scale energy storage system. Recently, the anode materials of KIB studied mainly include carbon materials, transition metal oxides, and alloy materials. The amorphous hard carbon shows the best comprehensive performance, but its intercalation potential is close to 0 V (versus K /K), which is easy to cause K dendrite and brings security risks.
View Article and Find Full Text PDF