Publications by authors named "Zichun Le"

Speckle is a significant challenge for laser imaging systems, as it degrades the image quality. In this study, an improved theoretical model is established to describe the speckle features in free-space optical path. The model quantitatively defines the relationship between speckle contrast and five parameters: wavelength, screen surface roughness, light-spot diameter, incidence angle, and observation angle.

View Article and Find Full Text PDF

Machine learning-assisted spectroscopy analysis faces a prominent constraint in the form of insufficient spectral samples, which hinders its effectiveness. Meanwhile, there is a lack of effective algorithms to simulate synthetic spectra from limited samples of real spectra for regression models in continuous scenarios. In this study, we introduced a continuous conditional generative adversarial network (CcGAN) to autonomously generate synthetic spectra.

View Article and Find Full Text PDF

Current static speckle suppression methods have an extremely large system size and unsatisfactory performance. This study proposes a device called beam-splitting cavity (BSC) and establishes a model of speckle suppression based on the combination of BSC and a liquid-core fiber. Subsequently, a passive static speckle suppression system is constructed and the key factors affecting the speckle contrast are studied.

View Article and Find Full Text PDF

Miniaturized and pure static devices are expected to be used in laser-imaging systems for speckle reduction. In this study, a pure static device based on polymer-stabilized liquid crystal (PSLC) doped with Ag nanowires was developed to effectively suppress laser speckles. The concentrations of the polymer and Ag nanowires in the PSLC were optimized, and then the PSLC devices were fabricated.

View Article and Find Full Text PDF

Here, we report on the epitaxial growth of GaN on patterned SiO-covered cone-shaped patterned sapphire surfaces (PSS). Physical vapor deposition (PVD) AlN films were used as buffers deposited on the SiO-PSS substrates. The gallium nitride (GaN) growth on these substrates at different alternating radio frequency (RF) power and nitridation times was monitored with sequences of scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging results.

View Article and Find Full Text PDF

Although microprisms have become an important medical means of strabismus treatment, related research concerning the design, fabrication, and testing of microprismatic glasses for preventing eyestrain has rarely been reported. In this study, the structure of microprismatic glasses for preventing eyestrain related to using electronic monitors, including computers and mobile phones, is introduced. A designing theory of anti-fatigue glasses with microprisms is developed.

View Article and Find Full Text PDF

Static laser speckle suppression using multimode fibers has practical limitations as the technique requires an extremely long fiber to achieve an acceptable speckle contrast. An effective method based on liquid light guides was developed in this study to suppress laser speckle. In this study, a speckle simulation model of the liquid light guide was established for numerically calculating the speckle contrast without solving the analytical solution of the photon diffusion equation.

View Article and Find Full Text PDF

Since the emergence of COVID-19, the number of infections has significantly increased. As of April 7, 8:00 am, the total number of global infections has already reached 1,338,415, with the number of deaths being 74,556. Medical experts from various countries have conducted relevant researches in their own fields and countries, and the development of an effective vaccine has been expected soon.

View Article and Find Full Text PDF

This paper explored a pragmatic approach to research the real-time performance of a multiway concurrent multiobject tracking (MOT) system. At present, most research has focused on the tracking of single-image sequences, but in practical applications, multiway video streams need to be processed in parallel by MOT systems. There have been few studies on the real-time performance of multiway concurrent MOT systems.

View Article and Find Full Text PDF

Link prediction is the most basic and essential problem in complex networks. This study analyzes the observed topological, time, attributive, label, weight, directional, and symbolic features and auxiliary information to find the lack of connection and predict the future possible connection. For discussion and analysis of the evolution of the network, the network model is of great significance.

View Article and Find Full Text PDF

The embedded visual tracking system has higher requirements for real-time performance and system resources, and this is a challenge for visual tracking systems with available hardware resources. The major focus of this study is evaluating the results of hardware optimization methods. These optimization techniques provide efficient utilization based on limited hardware resources.

View Article and Find Full Text PDF

A blind discrete-cosine-transform-based phase noise compensation (BD-PNC) is proposed to compensate the inter-carrier-interference (ICI) in the coherent optical offset-quadrature amplitude modulation (OQAM)-based filter-bank multicarrier (CO-FBMC/OQAM) transmission system. Since the phase noise sample can be approximated by an expansion of the discrete cosine transform (DCT) in the time-domain, a time-domain compensation model is built for the transmission system. According to the model, phase noise compensation (PNC) depends only on its DCT coefficients.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy is widely used to predict soil organic carbon (SOC) because it is rapid and accurate under proper calibration. However, the prediction accuracy of the calibration model may be greatly reduced if the soil characteristics of some new target areas are different from the existing soil spectral library (SSL), which greatly limits the application potential of the technology. We attempted to solve the problem by building a large-scale SSL or using the spiking method.

View Article and Find Full Text PDF

A method of speckle suppression without any active device is expected for pico-projectors. The effectiveness of the passive method of speckle reduction using a single multimode fiber and a multimode fiber bundle was actually measured and theoretically analyzed. The dependences of the speckle contrast and speckle suppression coefficient on the parameters of multimode fiber and projection systems were investigated.

View Article and Find Full Text PDF

A universal multi-parameter sensing scheme based on a self-interference micro-ring resonator (SIMRR) is proposed. Benefit from the special intensity sensing mechanism, the SIMRR allows multimode sensing in a wide range of wavelengths but immune from frequency noise. To process the multiple mode spectra that are dependent on multiple parameters, we adopt the machine learning algorithm instead of massive asymptotic solutions of resonators.

View Article and Find Full Text PDF

Soil nutrient detection is important for precise fertilization. A total of 150 soil samples were picked from Lishui City. In this work, the total nitrogen (TN) content in soil samples was detected in the spectral range of 900-1700 nm using a hyperspectral imaging (HSI) system.

View Article and Find Full Text PDF

Various nanostructured amorphous silicas [fumed silicas such as crude (A-300), hydro-compacted (cA-300, TS 100), and precipitated silica Syloid 244] were modified by different polydimethylsiloxanes such as PDMS5, PDMS100, PDMS200, PDMS1000, and PDMS12500 (the label numbers show the viscosity (η) values) using dimethyl carbonate (DMC) as a siloxane-bond-breaking reagent. In addition, hexamethyldisilazane was used to modify fumed silica cA-300. The nanocomposites were characterized using microscopy, infrared spectroscopy, thermodesorption, nitrogen adsorption-desorption, solid-state NMR spectroscopy, small-angle X-ray scattering, and zeta-potential methods.

View Article and Find Full Text PDF

Polymethylsiloxane (PMS) and fumed silica, alone and in a blended form (1:1 w/w), differently pretreated, hydrated, and treated again, were studied using TEM and SEM, nitrogen adsorption-desorption, H MAS and Si CP/MAS NMR spectroscopy, infrared spectroscopy, and methods of quantum chemistry. Analysis of the effects of adding water (0-0.5 g of water per gram of solids) to the blends while they are undergoing different mechanical treatment (stirring with weak (~1-2 kg/cm) and strong (~20 kg/cm) loading) show that both dry and wetted PMS (as a soft material) can be grafted onto a silica surface, even with weak mechanical loading, and enhanced mechanical loading leads to enhanced homogenization of the blends.

View Article and Find Full Text PDF

Three poly(organosiloxanes) (hydromethyl-, dimethyl-, and epoxymethylsiloxane) of different chain lengths and pendant groups and their mixtures of dimethyl (DMC) or diethyl carbonates (DEC) were applied in the modification of fumed silica nanoparticles (FSNs). The resulting modified silicas were studied in depth using Si, H, and C solid-state NMR spectroscopy, elemental analysis, and nitrogen adsorption-desorption (BET) analysis. The obtained results reveal that the type of grafting, grafting density, and structure of the grafted species at the silica surface depend strongly on the length of organosiloxane polymer and on the nature of the "green" additive, DMC or DEC.

View Article and Find Full Text PDF

In this paper, we analyze the ultrafast temporal and spectral responses of optical fields in tapered and metalized optical fibers (MOFs) and optical plasmon nanostrip probes (NPs). Computational experiment shows that output pulses of the NPs are virtually unchanged in shape and duration for input pulses with a duration of >1 fs and are not sensitive to changes in the parameters of the probe (such as convergence angle and taper length), while local enhancement of the electric field intensity reaches 300 times at the NP apex. Compared with the NPs, MOFs lead to significant output pulse distortions, even for input pulses with a duration of 10 fs.

View Article and Find Full Text PDF

A multidimensional vector quantization-based fast statistical-estimation (VQ-FSE) algorithm is proposed to enhance data compression performance in digitalized radio over fiber (D-RoF) systems. The original samples with Gaussian distribution are first transformed into these with uniform distribution via companding transformation. After the companding transformation operation, the signal vector is constructed by grouping multiple samples in a certain way so that there is little correlation among them.

View Article and Find Full Text PDF

A passively mode-locked fiber laser with controllable pulse width is demonstrated by use of an all-fiber saturable absorber based on a hybrid no-core fiber (NCF)-graded index multimode fiber (GIMF) structure incorporated into an Er-doped fiber ring cavity. Such a hybrid NCF-GIMF structure has a tunable intracavity filtering effect. As a result, the mode-locking operation is achieved with controllable pulse width and spectral bandwidth in the normal dispersion regime by only stretching the fiber device.

View Article and Find Full Text PDF

The compact and straightforward construction of a pico-projector using an original method for speckle suppression via a simple 1D diffractive optical element (DOE) structure on a loop of flexible film with tracked motion is demonstrated. The 1D-DOE structure is based on binary pseudorandom sequences. The method requires very little energy and space and can decrease speckle noise to levels below the detection sensitivity of the human eye.

View Article and Find Full Text PDF

In this work, we explore the depolymerization of poly(dimethylsiloxane) (PDMS-100) and poly(methylphenylsiloxane) (PMPS) using dimethyl carbonate (DMC) and develop a surface functionalization method by utilizing the DMC-imparted active methoxy end groups of the partially depolymerized polysiloxanes. The efficiency of dimethyl carbonate as a reagent for organosiloxane cleavage was confirmed by means of H NMR spectroscopy, size-exclusion chromatography, and viscosity measurements. The reaction of fumed silica with organosiloxanes (PMPS, PDMS-50) in the presence of DMC was investigated using the ζ-potential, Si and C solid-state NMR spectroscopy, IR spectroscopy, CHN analysis, contact angle goniometry, thermogravimetric analysis, scanning and transmission electron microscopy (TEM), and rheology.

View Article and Find Full Text PDF

Organosilicon layers chemically anchored on silica surfaces show high carbon content, good thermal and chemical stability and find numerous applications as fillers in polymer systems, thickeners in dispersing media, and as the stationary phases and carriers in chromatography. Methyl-terminated poly(dimethylsiloxanes) (PDMSs) are typically considered to be inert and not suitable for surface modification because of the absence of readily hydrolyzable groups. Therefore, in this paper, we report a new approach for surface modification of silica (SiO₂) nanoparticles with poly(dimethylsiloxanes) with different lengths of polymer chains (PDMS-20, PDMS-50, PDMS-100) in the presence of diethyl carbonate (DEC) as initiator of siloxane bond splitting.

View Article and Find Full Text PDF