Publications by authors named "Zichun Guo"

Introduction: Incorporating straw into the soil is a sustainable practice that can mitigate some of the adverse effects of excessive N fertilization on soil structure degradation and microbial diversity reduction.

Methods: This objective of this study was to determine the combined effects of straw management (straw return and straw removal) and N fertilization (0, 360, 450, 540, 630, and 720 kg N ha yr.) on crop yields, soil properties, and soil microbial communities in a long-term wheat-maize cropping system.

View Article and Find Full Text PDF

The leaf economic spectrum (LES) has been repeatedly verified with regional and global datasets. However, the LES of desert plants and its drivers has not been fully explored at the species level. In this study, we sampled three desert perennial plant species (, , and ) at three different geographical areas of distribution in Xinjiang, China, and measured 10 leaf economic traits to determine their strategy of resource utilization.

View Article and Find Full Text PDF

A field experiment was conducted on Alhagi sparsifolia Shap. with a long-term clipping history (5-8 years) to investigate the adaptation strategy of A. sparsifolia to long-term clipping.

View Article and Find Full Text PDF

Reports regarding the effects of long-term organic and inorganic fertilization on the quantity and quality of soil organic carbon (SOC), particularly in Vertisols, are scarce. In this study, we combined SOC physical fractionation with C NMR spectroscopy technology to investigate the effect of 34 years of continuous fertilization on the SOC physical fractions and its chemical composition of 0-20 cm soil layer in a Vertisol. This study consisted of six treatments: no fertilization (control), chemical nitrogen, phosphorus and potassium fertilizers (NPK), low and high amounts of straw with chemical fertilizers (NPKLS and NPKHS), and pig or cattle manure with chemical fertilizers (NPKPM and NPKCM).

View Article and Find Full Text PDF

Manure application is widely recognized as a method of improving soil structure and soil fertility due to additional organic matter and nutrient inputs. However, the salinity of animal manure may have a detrimental effect on soil aggregation. The objective of this study was to determine the effects of long-term animal manure application on soil aggregation, binding agents (soil organic carbon, SOC and glomalin-related soil protein, GRSP), and dispersing agents (e.

View Article and Find Full Text PDF