To explore the size, morphology, and distribution patterns of internal pore defects in WE43 magnesium alloy formed by laser powder bed fusion (LPBF), as well as their impact on its mechanical properties, computer tomography (CT), metallographic microscopy, and scanning electron microscopy were used to observe the material's microstructure and the morphology of tensile test fractures. The study revealed that a large number of randomly distributed non-circular pore defects exist internally in the LPBF-formed WE43 magnesium alloy, with a defect volume fraction of 0.16%.
View Article and Find Full Text PDFThis paper address the performance optimization of the battery heat sink module by analyzing the lattice structure of the battery heat sink module through in-depth modeling and simulation, and combining the laser powder bed fusion (LPBF)-forming technology with mechanical and corrosion resistance experiments for a comprehensive study. It is found that the introduction of the lattice skeleton significantly improves the thermal conductivity of the phase change material (PCM), realizing the efficient distribution and fast transfer of heat in the system. At the same time, the lattice skeleton makes the heat distribution in the heat exchanger more uniform, improves the utilization rate of the PCM, and helps to maintain the stability of the cell temperature.
View Article and Find Full Text PDF