Publications by authors named "Zicai Liang"

Introduction: ISIS 449884, a 2'-O-methoxyethyl antisense oligonucleotide that targets the glucagon receptor (GCGR), has demonstrated an ability to reduce hepatic glucose output and lower the blood glucose level. The primary objective of this study was to investigate the safety and efficacy of ISIS 449884 as an add-on to metformin in a population of Chinese patients with type 2 diabetes mellitus (T2DM).

Method: This was a multicenter, placebo-controlled (2:1), randomized, double-blind, parallel-enrollment, multiple-dose phase II study in Chinese patients with T2DM.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) constitutes a promising therapeutic modality supporting the potential functional cure of hepatitis B. A novel ionizable lipidoid nanoparticle (RBP131) and a state-of-the-art lyophilization technology were developed in this study, enabling to deliver siRNA targeting apolipoprotein B (APOB) into the hepatocytes with an ED of 0.05 mg/kg after intravenous injection.

View Article and Find Full Text PDF

Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.

View Article and Find Full Text PDF

pH-sensitive hydrophobic segments have been certificated to facilitate siRNA delivery efficiency of amphiphilic polycation vehicles. However, optimal design concepts for these vehicles remain unclear. Herein, by studying the library of amphiphilic polycations mPEG-PAMA-P(DEA--D5A) (EAE5), we concluded a multifactor matching concept (p values, "proton buffering capacities" (BCs), and critical micelle concentrations (CMCs)) for polycation vehicles to improve siRNA delivery efficiency and .

View Article and Find Full Text PDF

mRNA is a novel class of therapeutic modality that holds great promise in vaccination, protein replacement therapy, cancer immunotherapy, immune cell engineering However, optimization of mRNA molecules and efficient delivery are quite important but challenging for its broad application. Here we present an ionizable lipid nanoparticle (iLNP) based on iBL0713 lipid for and expression of desired proteins using codon-optimized mRNAs. mRNAs encoding luciferase or erythropoietin (EPO) were prepared by transcription and formulated with proposed iLNP, to form iLP171/mRNA formulations.

View Article and Find Full Text PDF

Background: BT200, a pegylated form of the aptamer BT100, inhibits binding of von Willebrand factor (VWF) to platelet glycoprotein GPIb, preventing arterial thrombosis in cynomolgus monkeys. It is being developed for secondary prevention of arterial thrombosis such as stroke or myocardial infarction. Inhibition of thrombogenesis by BT200 is expected to provide a therapeutic benefit.

View Article and Find Full Text PDF

Background: Thrombus formation involves coagulation proteins and platelets. The latter, referred to as platelet-mediated thrombogenesis, is predominant in arterial circulation. Platelet thrombogenesis follows vascular injury when extracellular von Willebrand factor (VWF) binds via its A3 domain to exposed collagen, and the free VWF A1 domain binds to platelet glycoprotein Ib (GPIb).

View Article and Find Full Text PDF

Synthetic oligonucleotides (oligos) are important tools in the fields of molecular biology and genetic engineering. For applications requiring a large number of oligos with high concentration, it is critical to perform high throughput oligo synthesis and achieve high yield of each oligo. This study reports a microreactor chip for oligo synthesis.

View Article and Find Full Text PDF

Tri-block copolymers have exhibited great potentials in small interfering RNA (siRNA) therapeutics. To reveal structure-activity relationships, we here synthesized a series of tri-block copolymers with different hydrophobic segments, PEG-PAMA-P(C6A-C7A-DPA-DBA) (EAAS) and PEG-PDAMAEMA-P(C6A-C7A-DPA-DBA) (EDAS), termed from EAASa to EAASh and EDASa to EDASh, with pKa ranging from 5.2 to 7.

View Article and Find Full Text PDF

Delivery of nucleic acid molecules into skin remains a main obstacle for various types of gene therapy or vaccine applications. Here we propose a novel electroporation approach combined use of a microneedle roller and a flexible interdigitated electroporation array (FIEA) for efficient delivery of DNA and siRNA into mouse skin. Using micromachining technology, closely spaced gold electrodes were made on a pliable parylene substrate to form a patch-like electroporation array, which enabled close surface contact between the skin and electrodes.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a common metabolic disease influenced by both genetic and environmental factors. In this study, we performed an in-house genotyping and meta-analysis study using three independent GWAS datasets of T2DM and found that rs3743121, located 1 kb downstream of AQR, was a novel susceptibility SNP associated with T2DM. The risk allele C of rs3743121 was correlated with the increased expression of AQR in white blood cells, similar to that observed in T2DM models.

View Article and Find Full Text PDF

Electrochemotherapy (ECT), as one of the very few available treatments for cutaneous and subcutaneous tumors when surgery and radiotherapy are no longer available, requires applying a proper electric field to the tumor to realize electroporation-mediated cytotoxic drug delivery. It is impossible to exhaust all possible electrical parameters on patients to realize the optimal tradeoff between tumor suppression and adverse effects. To address this issue, this study provides a feasible solution by developing a four-leaf micro-electrode chip (F-MEC) in which the electric field was specially designed by linear distribution to cover all possible electric field strengths for ECT.

View Article and Find Full Text PDF

Rapid progress has been made toward small interfering RNA (siRNA)-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodified strand of siRNAs but were well tolerated by the modified strand.

View Article and Find Full Text PDF

Polycations are generally used to work as delivery vector to develop siRNA-based therapy for gene-related diseases. The contradiction between inevitable toxicity, internalization, and pharmacokinetics of polycations/siRNA is a critical challenge for polycations and impedes their further application. Herein, we synthesized the ECMD polycations and constructed ECMD/siRNA/HA complexes with slight negative charge to address the above mentioned issue.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) therapies have been hampered by lack of delivery systems in the past decades. Nowadays, a few promising vehicles for siRNA delivery have been developed and it is gradually revealed that enhancing siRNA release from endosomes into cytosol is a very important factor for successful delivery. Here, we designed a novel pH-sensitive nanomicelle, PEG-PTTMA-P(GMA-S-DMA) (PTMS), for siRNA delivery.

View Article and Find Full Text PDF

Hydrophobization of cationic polymers, as an efficient strategy, had been widely developed in the structure of cationic polymer micelles to improve the delivery efficiency of nucleic acids. However, the distribution of hydrophobic segments in the polymer chains is rarely considered. Here, we have elaborated three types of hydrophobized polyethylene glycol (PEG)-blocked cationic polymers with different distributions of the hydrophobic segments in the polymer chains PEG-PAM-PDP (E-A-D), PEG-PDP-PAM (E-D-A), and PEG-P(AM/DP) (E-(A/D)), which were synthesized by reversible addition-fragmentation chain transfer polymerization of methoxy PEG, cationic monomer aminoethyl methacrylate, and pH-sensitive hydrophobic monomer 2-diisopropylaminoethyl methacrylate, respectively.

View Article and Find Full Text PDF

Small activating RNA (saRNA)-mediated gene activation has opened a new avenue for upregulating the expression of target genes by promoting endogenous transcription, a phenomenon known as RNA activation (RNAa). RNAa is distinct from the established RNAi mechanistic framework, although AGO2 is required by both. The precise mechanism of RNAa is currently disputable and has become a bottleneck in the development of this new technology.

View Article and Find Full Text PDF

The extremely low efficient cytosolic release of the internalized siRNA has emerged recently as a central issue for siRNA delivery, while there is a lack of guidelines to facilitate the cytosolic release of internalized siRNA. To address these concerns, we studied the contribution of the pH-sensitive inner core on handling the cytosolic release of siRNA delivered by a series of PG-P(DPAx-co-DMAEMAy)-PCB amphiphilic polycation nanomicelles (GDDC-Ms) with extremely low internalization (<1/4 of lipofactamine 2000 (Lipo2000)). Significantly, just by varying the mole ratio of DPA and DMAEMA to adjust the initial disassembly pH (pH) of the core near to 6.

View Article and Find Full Text PDF

The pharmacokinetics of small interfering RNAs (siRNAs) is a pivotal issue for siRNA-based drug development. In this study, we comprehensively investigated the behavior of siRNAs in vivo in various tissues and demonstrated that intravenously-injected naked siRNA accumulated remarkably in the submandibular gland, bulbourethral gland, and pancreas, with a respective half-life of ~22.7, ~45.

View Article and Find Full Text PDF

Self-assembly is a fundamental concept and a powerful approach in molecular science. However, creating functional materials with the desired properties through self-assembly remains challenging. In this work, through a combination of experimental and computational approaches, the self-assembly of small amphiphilic dendrons into nanosized supramolecular dendrimer micelles with a degree of structural definition similar to traditional covalent high-generation dendrimers is reported.

View Article and Find Full Text PDF

By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents.

View Article and Find Full Text PDF

Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures.

View Article and Find Full Text PDF

Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown.

View Article and Find Full Text PDF