Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders.
View Article and Find Full Text PDFAlthough keratins are robust in nature, hydrogels producing their extracts exhibit poor mechanical properties due to the complicated composition and ineffective self-assembly. Here we report a bioinspired strategy to fabricate robust keratin hydrogels based on mechanism study through recombinant proteins. Homotypic and heterotypic self-assembly of selected type I and type II keratins in different combinations was conducted to identify crucial domain structures for the process, their kinetics, and relationship with the mechanical strength of hydrogels.
View Article and Find Full Text PDFThe elevation of epoxy-fatty acids through inhibition of soluble epoxide hydrolase (sEH) is efficient for the treatment of inflammatory and pain-related diseases. Herein, we reported the discovery of a series of benzamide derivatives containing urea moiety as sEH inhibitors. Intensive structural modifications led to the identification of compound A34 as a potent sEH inhibitor with good physicochemical properties.
View Article and Find Full Text PDFThe pharmacological inhibition of soluble epoxide hydrolase (sEH) was shown to reduce inflammation and pain. Herein, we described a series of newly synthesized sEH inhibitors with the trident-shaped skeleton. Intensive structural modifications led to the identification of compound B15 as a potent sEH inhibitor with an IC value of 0.
View Article and Find Full Text PDFExcessive activation of N-methyl-d-aspartic acid (NMDA) receptors after cerebral ischemia is a key cause of ischemic injury. For a long time, it was generally accepted that calcium influx is a necessary condition for ischemic injury mediated by NMDA receptors. However, recent studies have shown that NMDA receptor signaling, independent of ion flow, plays an important role in the regulation of ischemic brain injury.
View Article and Find Full Text PDFThe lipid-coated mesoporous silica nanoparticles (LMSNs) that can synergistically harness the advantages and mitigate the disadvantages of the liposomes and MSNs are considered potential drug carriers. So far, several methods have been developed to prepare LMSNs, including vesicle fusion, thin-film hydration, and solvent exchange. Despite their wide application in LMSN preparation, these methods are short of detailed elaboration and comparison, which hinders their further development.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2023
NMDA receptors play an important physiological role in regulating synaptic plasticity, learning and memory. GluN2A subunits are the most abundant functional subunits of NMDA receptors expressed in mature brain, and their dysfunction is related to various neurological diseases. According to subunit composition, GluN2A-containing NMDA receptors can be divided into two types: diheteromeric and triheteromeric receptors.
View Article and Find Full Text PDFMuch evidence has proved that excitotoxicity induced by excessive release of glutamate contributes largely to damage caused by ischemia. In view of the key role played by NMDA receptors in mediating excitotoxicity, compounds against NMDA receptors signaling pathways have become the most promising type of anti-stroke candidate compounds. However, the limited therapeutic time window for neuroprotection is a key factor preventing NMDA receptor-related compounds from showing efficacy in all clinical trials for ischemic stroke.
View Article and Find Full Text PDFInhibition of the soluble epoxide hydrolase (sEH) is a promising new therapeutic approach in the treatment of inflammation. Driven by the in-house database product lead 1, a hybridization strategy was utilized for the design of a series of novel benzo [d]thiazol derivatives. To our delight, D016, a byproduct of compound 9, was obtained with an extraordinarily low IC value of 0.
View Article and Find Full Text PDFMost of the mesoporous chiral mesoporous silica (CMS) was synthesized by the chiral surfactant-directing method. In this study, a facile method was designed to synthesize CMS. In this method, achiral amphiphile was used as templating agents, and dilute ammonia solution was applied to induce the chirality of the CMS.
View Article and Find Full Text PDFBiological membranes play key roles in cell life, but their intrinsic complexity motivated the study and development of artificial lipid membranes with the primary aim to reconstitute and understand the natural functions in vitro. Porous-supported lipid membrane (pSLM) has emerged as a flexible platform for studying the surface chemistry of the cell due to their high stability and fluidity, and their ability to study the transmembrane process of the molecules. In this review, the pSLM, for the first time, to our knowledge, was divided into three types according to the way of the porous materials support the lipid membrane, containing the lipid membrane on the pores of the porous materials, the lipid membrane on both sides of the porous materials, the lipid membrane in the pores of the porous materials.
View Article and Find Full Text PDFOver the past decade, many studies have focused on clarifying the roles of different N-methyl-d-aspartate (NMDA) receptor subunits in cerebral ischemia, hoping to develop subunit-selective drugs. Recently, more attention was given to studying the role of GluN2C in ischemia damage, which may lead to the development of new NMDA receptor antagonists for cerebral ischemia. Results showed that GluN2C inhibition or knockout can effectively alleviate the ischemic injury caused by middle cerebral artery occlusion and, contrarily, can aggravate the damage to hippocampal CA1 circuit caused by transient global cerebral ischemia.
View Article and Find Full Text PDFAdenovirus (Ad) is a promising viral carrier in gene therapy because of its unique attribution. However, clinical applications of Ad vectors are currently restricted by their immunogenicity and broad native tropism. To address these obstacles, a variety of nonimmunogenic polymers are utilized to modify Ad vectors chemically or physically.
View Article and Find Full Text PDFFront Cell Neurosci
April 2019
Extracellular glutamate accumulation following cerebral ischemia leads to overactivation of glutamate receptors, thereby resulting in intracellular Ca overload and excitotoxic neuronal injury. Multiple attempts have been made to counteract such effects by reducing glutamate receptor function, but none have been successful. In this minireview, we present the available evidence regarding the role of all types of ionotropic and metabotropic glutamate receptors in cerebral ischemia and propose phased treatment strategies based on glutamate receptors in both the acute and post-acute phases of cerebral ischemia, which may help realize the clinical application of glutamate receptor antagonists.
View Article and Find Full Text PDFThe N-methyl-d-aspartate (NMDA) receptor, a typical ionotropic glutamate receptor, is a crucial protein for maintaining brain function. GluN2A and GluN2B are the main types of NMDA receptor subunit in the adult forebrain. Studies have demonstrated that they play different roles in a number of pathophysiological processes.
View Article and Find Full Text PDFOver-activation of NMDA receptors is a crucial step required for brain damage following a stroke. Although clinical trials for NMDA receptor blockers have failed, the role of GluN2A subunit in cerebral ischemia has been extensively evaluated in recent years. However, the effect of GluN2A on neuron damage induced by cerebral ischemia remains a matter of controversy.
View Article and Find Full Text PDFThe NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders.
View Article and Find Full Text PDFThe NMDA receptor, which is heavily involved in several human brain diseases, is a heteromeric ligand-gated ion channel that interacts with multiple intracellular proteins through the C-termini of different subunits. GluN2A and GluN2B are the two primary types of GluN2 subunits in the forebrain. During the developmental period, there is a switch from GluN2B- to GluN2A-containing NMDA receptors in synapses.
View Article and Find Full Text PDFProtein tyrosine phosphorylation is one of the primary modes of regulation of N-methyl-d-aspartate (NMDA) receptors. The non-receptor tyrosine kinases are one of the two types of protein tyrosine kinases that are involved in this process. The overactivation of NMDA receptors is a primary reason for neuron death following cerebral ischemia.
View Article and Find Full Text PDFTo develop effective, convenient and stable mucosal vaccines, mannose-PEG-cholesterol (MPC)/lipid A-liposomes (MLLs) entrapping model antigen bovine serum albumin (BSA) were prepared by the procedure of emulsification-lyophilization and used to constitute microneedles, forming the proMLL-filled microneedle arrays (proMMAs). The proMMAs were rather stable and hard enough to pierce porcine skin and, upon rehydration, dissolved rapidly recovering the MLLs without size and entrapment change. The proMMAs given to mice via oral mucosal (o.
View Article and Find Full Text PDFThe glutamate (Glu) transporters GLAST and GLT-1, as the two most important transporters in brain tissue, transport Glu from the extracellular space into the cell protecting against Glu toxicity. Furthermore, GLAST and GLT-1 are sodium-dependent Glu transporters (GluTs) that rely on sodium and potassium gradients generated principally by Na(+), K(+)-ATPase to generate ion gradients that drive Glu uptake. There is an interaction between Na(+), K(+)-ATPase and GluTs to modulate Glu uptake, and Na(+), K(+)-ATPase α, β or γ subunit can be directly coupled to GluTs, co-localizing with GLAST or GLT-1 in vivo to form a macromolecular complex and operate as a functional unit to regulate glutamatergic neurotransmission.
View Article and Find Full Text PDFThis study aims to prepare amphotericin B magnetic liposomes (AmB-MLPs), which may improve drug concentration in brain, enhance magnetic targeting for brain and reduce drug toxicity in the presence of magnetic field. AmB-MLPs were prepared by means of film dispersion-ultrasonication, and their physical properties were characterized. In vivo, the magnetic targeting for brain by carotid artery administration was investigated.
View Article and Find Full Text PDF