Accompanied with restriction of legacy per- and polyfluoroalkyl substances (PFASs), numbers of emerging PFASs are widely detected in the environment. However, information on environmental occurrences and behaviors of emerging PFASs were scarce in agricultural soils. In this study, the spatial distributions, sources, substitution trends and ecological risk assessment of 31 legacy and emerging PFASs were investigated in 69 agricultural soils from Fuxin, North China.
View Article and Find Full Text PDFAs one of the typical brominated flame retardants, decabromodiphenyl ether (BDE-209) has been widely detected in environment. However, scarce information was available on BDE-209 phototransformation mechanisms in various media. In this study, compound-specific stable isotope analysis was first applied to investigate BDE-209 phototransformation in n-hexane, MeOH:HO (v:v, 8:2), and simulated seawater by simulated sunlight.
View Article and Find Full Text PDFStrict restriction on legacy per- and polyfluoroalkyl substances (PFASs) has caused a dramatic increase in production and usage of emerging PFASs over the last decades. However, the environmental behaviors of emerging PFASs is largely unknown in Daling River, Northern China. In this study, the potential sources, sediment-water partitioning and substitution trends of PFASs were investigated in overlying water and sediments from Daling River and its estuary.
View Article and Find Full Text PDFThe uptake, translocation, and transformation of 2,2',4,4'-tetra brominated diphenyl ether (BDE-47) in wheat ( L.) were comprehensively investigated by hydroponic experiments using compound-specific stable isotope analysis (CSIA) and transcriptome analysis. The results indicated that BDE-47 was quickly adsorbed on epidermis of wheat roots and then absorbed in roots via water and anion channels as well as an active process dependent on energy.
View Article and Find Full Text PDF