Publications by authors named "Ziang Zhao"

Spinal cord injury (SCI) is a debilitating central nervous system (CNS) disorder that leads to significant motor and sensory impairments. Given the limited regenerative capacity of adult mammalian neurons, this study presents an innovative strategy to enhance axonal regeneration and functional recovery by identifying a novel factor that markedly promotes axonal regeneration. Employing a zebrafish model with targeted single axon injury in Mauthner cells (M-cells) and utilizing the Tg (Tol056: EGFP) transgenic line for in vivo monitoring, we investigate the intrinsic mechanisms underlying axonal regeneration.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells).

View Article and Find Full Text PDF

Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e.

View Article and Find Full Text PDF

Supported metal clusters comprising of well-tailored low-nuclearity heteroatoms have great potentials in catalysis owing to the maximized exposure of active sites and metal synergy. However, atomically precise design of these architectures is still challenging for the lack of practical approaches. Here, we report a defect-driven nanostructuring strategy through combining defect engineering of nitrogen-doped carbons and sequential metal depositions to prepare a series of Pt and Mo ensembles ranging from single atoms to sub-nanoclusters.

View Article and Find Full Text PDF

Two-dimensional carbon-based materials have great potential for electrocatalysis. Herein, we screen 12 defective and doped CN nanosheets by evaluating their CORR and NRR activity and selectivity the HER based on density functional theory calculations. The calculation results suggest that all 12 CNs can enhance CO adsorption and activation.

View Article and Find Full Text PDF

Fischer-Tropsch synthesis (FTS), which provides a green route to the production of clean fuels and fine chemicals, represents some significant applications of catalytic materials and processes in the chemical industry. FTS reactions show a diversity of mechanisms, involve various catalytic materials, and offer options for continuous investigation. Cobalt-based catalysts have been widely used for Fischer-Tropsch synthesis both in academia and in industry.

View Article and Find Full Text PDF

MNBs (Micro-nano bubbles) are widely used in cleaning processes for environmental treatments, but few studies have examined the interaction of MNBs with coagulation. In this study, a novel process, i.e.

View Article and Find Full Text PDF

Coordination polymers with large surface areas and uniform but tunable cavities have attracted extensive attention because of their unique properties and potential applications in numerous fields. The introduction of noble metal into coordination polymers, which may enhance or display new behaviors beyond their parent counterparts, presents great challenges in maintaining the fragile coordination structures and meeting the compatibility. Here, cyano-bridged coordination polymers are robust and show very nice compatibilities with a series of noble metals, such as Pd, Pt, Au, Ag.

View Article and Find Full Text PDF

Noble metal nanocatalysts with remarkable catalytic properties have attracted much attention; however, the high cost of these materials limits their industrial applications. Here, we design and prepare Co@SiO2 nanorattles as a mixture of hcp-Co and fcc-Co phases as a substitute. The nanorattles exhibit both superior catalytic activity and high stability for the reduction of p-nitrophenol.

View Article and Find Full Text PDF

Optical second harmonic generation (SHG) is known as a sensitive probe to the crystalline symmetry of few-layer transition metal dichalcogenides (TMDs). Layer-number dependent and polarization resolved SHG have been observed for the special case of Bernal stacked few-layer TMDs, but it remains largely unexplored for structures deviated from this ideal stacking order. Here we report on the SHG from homo- and heterostructural TMD bilayers formed by artificial stacking with an arbitrary stacking angle.

View Article and Find Full Text PDF